The Role of Second Phase Intermetallic Precipitates in Fatigue Fracture Mechanism for Aluminum Alloy AW 7075

Article Preview

Abstract:

This paper presents the results of durability tests of AW7075 aluminium alloy, which is widely used in producing high-durable and particularly reliable constructions in aeronautical and automotive industries. The plain-strain fracture toughness, depending on the orientation of fracture direction with respect to the rolling direction of the material, and the fatigue crack growth rate were determined. Based on scanning electron microscope (SEM) studies the two stages of fatigue fracture are shown: the first is plastic striations and the second is phenomenon of connecting micropores that were formed around intermetallic second phase particles. As a results of research a model of fatigue crack for the second stage is presented.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

809-812

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller: Material Science and Engineering A, Vol. 280, (2000), pp.102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[2] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vierrege: Material Science and Engineering A, Vol. 280 (2000). pp.37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[3] K. Lee, Y. N. Kwon, S. Lee: Engineering Fracture Mechanics Vol. 75 (2008), pp.4200-4216.

Google Scholar

[4] J. Payne, G. Welsh, R.J. Christ Jr., J. Nardiello, J. M. Papazian: International Journal of Fatigue, Vol. 32 (2010), pp.247-255.

DOI: 10.1016/j.ijfatigue.2009.06.003

Google Scholar

[5] Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, J.B. Jordon: Engineering Fracture Mechanics Vol. 74 (2007), pp.2810-2823.

DOI: 10.1016/j.engfracmech.2006.12.031

Google Scholar

[6] T.S. Srivatsan, S. Anand, S. Sriram, V.K. Vasudevan: Materials Science and Engineering A, Vol. 281 (2000), pp.292-304.

Google Scholar

[7] G. Chruścielski: Postępy Nauki i Techniki, Vol. 11 (2011), pp.16-24.

Google Scholar

[8] E. Salamci, R.F. Cochrane: Materials Science and Technology Vol. 18 (2002), pp.1445-1452.

Google Scholar

[9] X. -M. Li, M.J. Starink: : Materials Science and Technology Vol. 17, (2001), pp.1324-1328.

Google Scholar

[10] Z. Cvijović, M. Rakin, M. Vratnica, I. Cvijović: Engineering Fracture Mechanisc Vol. 75 (2008), pp.2115-2129.

DOI: 10.1016/j.engfracmech.2007.10.010

Google Scholar

[11] S. Kocańda: Zmęczeniowe niszczenie metali, WNT, Warszawa (1978).

Google Scholar

[12] M. Tajally, Z. Huda, H.H. Masjuki: International Journal of Impact Engineering Vol. 37 (2010), pp.425-432.

Google Scholar

[13] M.O. Lai, W.G. Ferguson: Materials Science and Engineering Vol. 74 (1985), pp.133-138.

Google Scholar

[14] T. Zhao, Y. Jiang: International Journal of Fatigue Vol. 30 (2008), pp.834-849.

Google Scholar