Solubility of Phoenix dactylifera Seed Oil in Supercritical Carbon Dioxide (Sc-Co2) Using Empirical Model

Article Preview

Abstract:

Phoenix dactylifera L. type Mariami from Iran was chosen for this study to investigate the solubility of its seed oil in supercritical carbon dioxide (SC-CO2). The seed has been discovered to possess an antioxidant. The extraction method using SC-CO2 solvent was used in this study to investigate the capabilities of supercritical fluid to extract Phoenix dactylifera L. seed oil since the method is clean compared with organic solvent extraction. Solubility of Phoenix dactilyfera seeds oil in SC-CO2 was correlated using empirical density based model with the help of IBM SPSS software for significance and correlation analysis of the models. Analysis of component in the oil was done using gas chromatography equipped with mass spectrometry (GC-MS). Oleic acid revealed to be the main fatty acid in Phoenix dactylifera seed oil, followed by palmitic acid, lauric acid, ascorbyl palmitate and others.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

301-305

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Amani, M. S. Davoudi, K. Tahvildari, S. M. Nabavi, and M. S. Davoudi: Biodiesel production from Phoenix dactylifera as a new feedstock. Industrial Crops and Products. Vol. 43, (2013), pp.40-43.

DOI: 10.1016/j.indcrop.2012.06.024

Google Scholar

[2] M. Akbari, R. Razavizadeh, G. H. Mohebbi, and A. Barmak: Oil characteristics and fatty acid profile of seeds from three varieties of date palm (Phoenix dactylifera) cultivars in Bushehr-Iran. African Journal of Biotechnology. Vol. 11, (2012).

DOI: 10.5897/ajb12.1084

Google Scholar

[3] T. P. Kalantaripour, M. Asadi-Shekaari, M. Basiri, and A. G. Najar: Cerebroprotective Effect of Date Seed Extract (Phoenix dactylifera) on Focal Cerebral Ischemia in Male Rats. Journal of Biological Sciences. Vol. 12, (2012), pp.180-185.

DOI: 10.3923/jbs.2012.180.185

Google Scholar

[4] S. M. Pourmortazavi and S. S. Hajimirsadeghi: Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A. Vol. 1163, (2007), pp.2-24.

DOI: 10.1016/j.chroma.2007.06.021

Google Scholar

[5] J. Jin, Y. Wang, H. Liu, and Z. Zhang: Determination and calculation of solubility of bisphenol A in supercritical carbon dioxide. Chemical Engineering Research and Design. Vol. 91, (2013), pp.158-164.

DOI: 10.1016/j.cherd.2012.06.013

Google Scholar

[6] R. Haghbakhsh, H. Hayer, M. Saidi, S. Keshtkari, and F. Esmaeilzadeh: Density estimation of pure carbon dioxide at supercritical region and estimation solubility of solid compounds in supercritical carbon dioxide: Correlation approach based on sensitivity analysis. Fluid Phase Equilibria. Vol. 342, (2013).

DOI: 10.1016/j.fluid.2012.12.029

Google Scholar

[7] M. R. Shams Ardekani, M. Khanavi, M. Hajimahmoodi, M. Jahangiri, and A. Hadjiakhoondi: Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran. Iranian Journal of Pharmaceutical Research. Vol. 9, (2010).

Google Scholar

[8] N. A. Aris, I. Norhuda, and I. S. Adeib: Extraction of Phoenix Dactylifera (Mariami) seeds oil using supercritical carbon dioxide (SC-CO2). International Journal of Chemical and Environmental Engineering. Vol. 4, (2013), pp.32-37.

DOI: 10.4028/www.scientific.net/kem.594-595.301

Google Scholar

[9] H. A. Martinez-Correa, D. C. A. Gomes, S. L. Kanehisa, and F. A. Cabral: Measurements and thermodynamic modeling of the solubility of squalene in supercritical carbon dioxide. Journal of Food Engineering. Vol. 96, (2010), pp.43-50.

DOI: 10.1016/j.jfoodeng.2009.06.041

Google Scholar

[10] J. Chrastil: Solubility of solids and liquids in supercritical gases. Journal of Physical Chemistry. Vol. 86, (1982), pp.3016-3021.

DOI: 10.1021/j100212a041

Google Scholar

[11] J. M. del Valle and J. M. Aguilera: An improved equation for predicting the solubility of vegetable oils in supercritical CO2. Industrial & Engineering Chemistry Research. Vol. 27, (1988), pp.1551-1553.

DOI: 10.1021/ie00080a036

Google Scholar

[12] P. -Y. Chen, W. -H. Chen, S. -M. Lai, and C. -M. J. Chang: Solubility of Jatropha and Aquilaria oils in supercritical carbon dioxide at elevated pressures. The Journal of Supercritical Fluids. Vol. 55, (2011), pp.893-897.

DOI: 10.1016/j.supflu.2010.09.006

Google Scholar

[13] X. Bian, Z. Du, and Y. Tang: An improved density-based model for the solubility of some compounds in supercritical carbon dioxide. Thermochimica Acta. Vol. 519, (2011), pp.16-21.

DOI: 10.1016/j.tca.2011.02.023

Google Scholar

[14] M. A. Rehab Salih, A. Alsheikh AlGilani, M. E. Abdel Rahim, and A. G. ELrasheed: Physico-Chemical Characteristics of Date Seed Oil Grown in Sudan. American Journal of Applied Sciences. Vol. 9, (2012), pp.993-999.

DOI: 10.3844/ajassp.2012.993.999

Google Scholar

[15] H. M. Habib, H. Kamal, W. H. Ibrahim, and A. S. A. Dhaheri: Carotenoids, fat soluble vitamins and fatty acid profiles of 18 varieties of date seed oil. Industrial Crops and Products. Vol. 42, (2013), pp.567-572.

DOI: 10.1016/j.indcrop.2012.06.039

Google Scholar

[16] W. Al-Shahib and J. M. Richard: The fruit of the date palm: Its possible use as the best food for the future. International Journal Food Science and Nutrition. Vol. 54, (2003), pp.247-259.

DOI: 10.1080/09637480120091982

Google Scholar

[17] M. Al-Farsi and C. Y. Lee: Nutritional and functional properties of dates: a review. Critical Reviews in Food Science and Nutrition. Vol. 48, (2008), p.877–887.

DOI: 10.1080/10408390701724264

Google Scholar