Monitoring Initial Glucose Concentration for Optimum pH Control during Fermentation of Microbial Cellulose in Rotary Discs Reactor

Article Preview

Abstract:

The study aimed to investigate the effect of initial glucose concentration on the microbial cellulose production using Acetobacter xylinum in a Rotary Discs Reactor (RDR-2 liter volume). The fermentations were carried out for four days at temperature 28°C, initial pH 6.5, and 9 rpm of rotation speed; meanwhile, the initial glucose concentration was manipulated in the range of 0.5-5.0 % (w/v). The cell growth was stimulated using 1.4% (v/v) ethanol in the fermentation medium. The result indicated that 1% (w/v) of initial glucose concentration provided the highest microbial cellulose yield with total wet weight of 296.1657g/l. The increase of initial glucose concentration resulted to the decrease of microbial cellulose yield and greater pH drop after fermentation. It can be conclude that production of microbial cellulose using RDR could produce relatively much higher microbial cellulose with less amounts of glucose in a shorter fermentation period compared to static fermentation due to more efficient oxygen uptake during rotary movements and homogenous environment for microbial growth.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

319-324

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Halib, M.C.I. Amin and A. Ishak: Physicochemical Properties and Characterization of Nata de Coco from Local Food Industries as a Source of Cellulose, Sains Malaysiana 41(2)(2012), p.205–211.

Google Scholar

[2] R. M. Jr. Brown: Cellulose Structure and Biosynthesis: What is on the store for the 21st Century,. Journal of Polymer Science: Part A: Polymer Chemistry 42(3)(2004), pp.487-495.

DOI: 10.1002/pola.10877

Google Scholar

[3] R. Jonas, & L.F. Farah: Production and application of microbial cellulose,. Polymer Degradation and Stability 59(1998), pp.101-188.

DOI: 10.1016/s0141-3910(97)00197-3

Google Scholar

[4] W.N. Goh, A. Rosma, B. Kaur, A. Fazilah, A.A. Karim, and B. Rajeev: Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II,. International Food Research Journal 19(1)(2012).

Google Scholar

[5] Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, M. & S. Mitsuhashi: The structure and mechanical properties of sheets prepared from bacterial cellulose. Part II Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers,. Journal of Materials Science 25(1990).

DOI: 10.1007/bf00584917

Google Scholar

[6] N. Halib, M.C.I. Amin, I. Ahmad, Z. Hashim, Z & N. Jamal: Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli,. Sains Malaysiana 38(5)(2009), pp.785-791.

Google Scholar

[7] N. Halib, M.C.I. Amin, & I. Ahmad: Unique Stimuli Responsive Characteristics of Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite, Journal of Applied Polymer Science 116(2010), pp.2920-2929.

DOI: 10.1002/app.31857

Google Scholar

[8] J.D. Fontana, A.M. de Souza, C.K. Fontana, I.L. Torriani, J.C. Moreschi, B.J. Gallotti, S. J de Souza, G.P. Narcisco, J.A. Bichara, & L.F.X. Farah: Acetobacter Cellulose Pellicle as a Temporary Skin Substitute,. Applied Biochemistry and Biotechnology 24/25(1990).

DOI: 10.1007/bf02920250

Google Scholar

[9] H. Bäckdahl, G. Helenius, A. Bodin, U. Nannmark, B.R. Johansson, B. Risberg, & P. Gatenholm: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells,. Biomaterials 27(2006), pp.2141-2149.

DOI: 10.1016/j.biomaterials.2005.10.026

Google Scholar

[10] P.A. Charpentier, A. Maguire, & W. K Wan: Surface modification of polyester to produce bacterial cellulose-based vascular prosthetic device,. Applied Surface Science 252(2006), pp.6360-6367.

DOI: 10.1016/j.apsusc.2005.09.064

Google Scholar

[11] P. Norhayati, Z.A. Khairul and M.I. Ida: Production of Biopolymer from Acetobacter xylinum Using Different Fermentation Methods,. International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 05(2011).

Google Scholar

[12] M. Schramm and S. Hestrin: Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xvlinum,. J. Gen. Microbial., 11(1954), pp.123-129.

DOI: 10.1099/00221287-11-1-123

Google Scholar

[13] J. Zhang and R. Greasham: Chemically defined media for commercial fermentations,. Appl Microbiol Biotechnol, 51(1999), p.407–421.

DOI: 10.1007/s002530051411

Google Scholar

[14] U.R. Mahadevaswamy and A. Anu: Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09, Springer-Verlag and the University of Milan. (2011).

DOI: 10.1007/s13213-011-0196-7

Google Scholar

[15] H. J Son, M.S. Heo, Y.G. Kim, S.J. Lee: Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures, Biotechnol. Appl. Biochem. 33(2001), p.1–5.

DOI: 10.1042/ba20000065

Google Scholar

[16] S. Masaoka, T. Ohe, N. Sakota; Production of cellulose from glucose by Acetobacter xylinum, J. Ferment. Bioeng. 75(1993), p.18–22.

DOI: 10.1016/0922-338x(93)90171-4

Google Scholar

[17] P. De Wulf, K. Joris and E.J. Vandamme: Improved Cellulose Formation by Acetobacter xylinum mutant limited in (keto) gluconate synthesis,. J. Chem. Tech. Biotechnol., 67(1996), pp.376-380.

DOI: 10.1002/(sici)1097-4660(199612)67:4<376::aid-jctb569>3.0.co;2-j

Google Scholar

[18] P. Ross, R. Mayer and M. Benzimen: Cellulose Biosynthesis and Function in Bacteria,. Microbial Rev., 55(1991), pp.35-38.

Google Scholar

[19] E.J. Vandamme, S. DeBeats, A. Vanbaelan, K. Joris and P. DeWulf: Improved Production of Bacterial Cellulose and Its Application Potential., Polymer Degradation and Stability, Vol. 59, (1997), pp.93-99.

DOI: 10.1016/s0141-3910(97)00185-7

Google Scholar

[20] P.C. Verschuren, T.D. Cardon, M.J. Robert Nout, K.D. DE Gooijer and J.V. Den Huevel: Location of Cellulose Production by Acetobacter Xylinum Established from Oxygen Profiles., Journal of Bioscience & Bioengineering Vol. 89, No. 5(2000).

DOI: 10.1016/s1389-1723(00)89089-1

Google Scholar

[21] A. Krystynowicz, W. Czaja, A. Wiktorowska-Jezierska, M. Goncalves-Miskiewicz, M. Turkiewicz and S. Bielecki: Factors Affecting the Yield and Properties of Bacterial Cellulose,. Institute of Technical Biochemistry, Technical University of Lodz, Stefanowskiego 4/10, Lodz 90-924, Poland. (2002).

DOI: 10.1038/sj.jim.7000303

Google Scholar

[22] T. Naritomi, T. Kouda, H. Yano, F. Yoshinaga: Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture,. Process Biochem., 38(2002), pp.41-47.

DOI: 10.1016/s0032-9592(02)00046-8

Google Scholar

[23] H.J. Son, H.G. Kim, K.K. Kim, H.S. Kim and Y.G. Kim: "Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol., 86(2003), pp.215-219.

DOI: 10.1016/s0960-8524(02)00176-1

Google Scholar

[24] S. Bae, Y. Sugano, M. Shoda: Improvement of bacterial cellulose production by addition of agar in a jar fermentor,. J. Biosci. Bioeng., 97(2004), pp.33-38.

DOI: 10.1016/s1389-1723(04)70162-0

Google Scholar

[25] G.Z. Pourramezan, A.M. Roayaei and Q.R. Qezelbash: Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2,. Biotechnol., 8(2009), pp.150-154.

DOI: 10.3923/biotech.2009.150.154

Google Scholar

[26] E. Trovatti, L.S. Serafim, C.S.R. Freire, A.J.D. Silvestre, C.P. Neto: Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory,. Carbohydrate Polymers 86 (2011), p.1417– 1420.

DOI: 10.1016/j.carbpol.2011.06.046

Google Scholar

[27] Z. Junaidi and A.N. Muhammad: Optimization of Bacterial Cellulose Production from Pineapple Waste: Effect of Temperature, pH and Concentration". EnCon 2012, 5th Engineering Conference, "Engineering Towards Change - Empowering Green Solutions, 10-12th July 2012, Kuching Sarawak. (2012).

Google Scholar

[28] C. Castroa, R. Zuluagaa, C. Álvareza, J.L. Putauxb, G. Caroa, J.O. Rojasc, P. Mondragone Ga˜nána: Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus,. Carbohydrate Polymers 89 (2012), P. 1033– 1037.

DOI: 10.1016/j.carbpol.2012.03.045

Google Scholar