[1]
Garg, V., et al., Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes and pigments, 2004. 63(3): pp.243-250.
DOI: 10.1016/j.dyepig.2004.03.005
Google Scholar
[2]
Lynch, D.G., Estimating the properties of synthetic organic dyes. Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences. Lewis, Boca Raton, FL, USA, 2000: pp.447-463.
DOI: 10.1201/9781420026283.ch18
Google Scholar
[3]
Nilamadanthai, A., et al., Photocatalytic destruction of an organic dye, Acid Red 73 in aqueous ZnO suspension using UV light energy. Indian Journal of Chemistry, 2013. 52: pp.63-67.
Google Scholar
[4]
Senthilkumaar, S., et al., Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 2005. 284(1): pp.78-82.
DOI: 10.1016/j.jcis.2004.09.027
Google Scholar
[5]
Marsh, H., E.A. Heintz, and F. Rodríguez-Reinoso, Introduction to carbon technologies. 1997: Universidad de Alicante.
Google Scholar
[6]
Foo, K.Y. and B.H. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal, 2012. 187(0): pp.53-62.
DOI: 10.1016/j.cej.2012.01.079
Google Scholar
[7]
Mohamed, M.M., Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface Science, 2004. 272(1): pp.28-34.
DOI: 10.1016/j.jcis.2003.08.071
Google Scholar
[8]
Girgis, B.S., S.S. Yunis, and A.M. Soliman, Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 2002. 57(1): pp.164-172.
DOI: 10.1016/s0167-577x(02)00724-3
Google Scholar
[9]
Ganan, J., et al., Preparation of activated carbons from bituminous coal pitches. Applied surface science, 2004. 238(1): pp.347-354.
DOI: 10.1016/j.apsusc.2004.05.222
Google Scholar
[10]
Hu, Z., M. Srinivasan, and Y. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon, 2001. 39(6): pp.877-886.
DOI: 10.1016/s0008-6223(00)00198-6
Google Scholar
[11]
Yang, J. and K. Qiu, Development of high surface area mesoporous activated carbons from herb residues. Chemical Engineering Journal, 2011. 167(1): pp.148-154.
DOI: 10.1016/j.cej.2010.12.013
Google Scholar
[12]
Mokhtar, M.F., et al., Preparation of Activated Carbon from Durian Shell and Seed. Advanced Materials Research, 2013. 626: pp.887-891.
DOI: 10.4028/www.scientific.net/amr.626.887
Google Scholar
[13]
Tham, Y., et al., Performances of toluene removal by activated carbon derived from durian shell. bioresource technology, 2011. 102(2): pp.724-728.
DOI: 10.1016/j.biortech.2010.08.068
Google Scholar
[14]
Marsh, H. and F.R. Reinoso, Activated carbon. 2006: Elsevier Science.
Google Scholar
[15]
Li, W. -H., et al., Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 2011. 171(1): pp.320-327.
DOI: 10.1016/j.cej.2011.04.012
Google Scholar
[16]
Nuithitikul, K., S. Srikhun, and S. Hirunpraditkoon, Kinetics and equilibrium adsorption of Basic Green 4 dye on activated carbon derived from durian peel: Effects of pyrolysis and post-treatment conditions. Journal of the Taiwan Institute of Chemical Engineers, 2010. 41(5): pp.591-598.
DOI: 10.1016/j.jtice.2010.01.007
Google Scholar
[17]
El-Maghraby, A. and H. El Deeb, Removal of a Basic Dye from Aqueous Solution by Adsorption using Rice Hulls. Global NEST Journal, 2011. 13(1): pp.90-98.
DOI: 10.30955/gnj.000560
Google Scholar