Effect of Filler Size on Flexural Properties of Calcium Carbonate Derived from Clam Shell Filled with Unsaturated Polyester Composites

Article Preview

Abstract:

The effect of filler size to the flexural properties of the calcium carbonate (CaCO3) filled with unsaturated polyester (UP) composites have been experimentally investigated. The filler was derived from the shell of local clam known as Polymesoda bengalensis. The ground shells were graded into eight different sizes according to the sieve aperture size of which they could pass through. The sample with 4 wt% CaCO3 reinforced with UP was fabricated. Then, the flexural test was done according to the ASTM D790. The result shows that for micron size filler, the flexural modulus was improved as the powder was filled into the UP matrix composite and the maximum value achieved at 574.81 μm mean diameter filler size. However, the infusion of the micron size CaCO3 filler into the UP matrix decreases the flexural strength of the composites.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

57-62

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.N. Rothon, The high performance fillers market and the position of precipitated calcium carbonate and silica. Proceedings of high filler 2007, Hamburg, Germany, (2007).

Google Scholar

[2] J.E. Otterstedt and D.A. Brandreth, Small particles technology. 1998: Springer.

Google Scholar

[3] J. Cho, M. Joshi, and C. Sun, Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Composites Science and Technology, 2006. 66(13): p.1941-(1952).

DOI: 10.1016/j.compscitech.2005.12.028

Google Scholar

[4] N. Chisholm, H. Mahfuz, V.K. Rangari, A. Ashfaq, and S. Jeelani, Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Composite structures, 2005. 67(1): pp.115-124.

DOI: 10.1016/j.compstruct.2004.01.010

Google Scholar

[5] L. Jiang, Y. Lam, K. Tam, T. Chua, G. Sim, and L. Ang, Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer, 2005. 46(1): pp.243-252.

DOI: 10.1016/j.polymer.2004.11.001

Google Scholar

[6] S. Mishra, S. Sonawane, and R. Singh, Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP‐nano CaCO3 composites. Journal of Polymer Science Part B: Polymer Physics, 2004. 43(1): pp.107-113.

DOI: 10.1002/polb.20296

Google Scholar

[7] B. Pukanszky and G. VÖRÖS, Mechanism of interfacial interactions in particulate filled composites. Composite Interfaces, 1993. 1(5): pp.411-427.

DOI: 10.1163/156855493x00266

Google Scholar

[8] Y. Nakamura, M. Yamaguchi, M. Okubo, and T. Matsumoto, Effect of particle size on mechanical properties of epoxy resin filled with angular‐shaped silica. Journal of applied polymer science, 2003. 44(1): pp.151-158.

DOI: 10.1002/app.1992.070440116

Google Scholar

[9] C. Verbeek, The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites. Materials Letters, 2003. 57(13): p.1919-(1924).

DOI: 10.1016/s0167-577x(02)01105-9

Google Scholar

[10] Y. Dong, D. Chaudhary, C. Ploumis, and K.T. Lau, Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Composites Part A: Applied Science and Manufacturing, 2011. 42(10): pp.1483-1492.

DOI: 10.1016/j.compositesa.2011.06.015

Google Scholar

[11] K. Yang, Q. Yang, G. Li, Y. Sun, and D. Feng, Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Materials letters, 2006. 60(6): pp.805-809.

DOI: 10.1016/j.matlet.2005.10.020

Google Scholar

[12] Y. Ou, F. Yang, and Z.Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science Part B: Polymer Physics, 1998. 36(5): pp.789-795.

DOI: 10.1002/(sici)1099-0488(19980415)36:5<789::aid-polb6>3.0.co;2-g

Google Scholar

[13] H. He, K. Li, J. Wang, G. Sun, Y. Li, and J. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Materials & Design, 2011. 32(8): pp.4521-4527.

DOI: 10.1016/j.matdes.2011.03.026

Google Scholar

[14] C.K. Lam, H. Cheung, K. Lau, L. Zhou, M. Ho, and D. Hui, Cluster size effect in hardness of nanoclay/epoxy composites. Composites Part B: Engineering, 2005. 36(3): pp.263-269.

DOI: 10.1016/j.compositesb.2004.09.006

Google Scholar

[15] B. Pokroy, J. Fieramosca, R. Von Dreele, A. Fitch, E. Caspi, and E. Zolotoyabko, Atomic structure of biogenic aragonite. Chemistry of materials, 2007. 19(13): pp.3244-3251.

DOI: 10.1021/cm070187u

Google Scholar

[16] D. He and B. Jiang, The elastic modulus of filled polymer composites. Journal of applied polymer science, 2003. 49(4): pp.617-621.

DOI: 10.1002/app.1993.070490408

Google Scholar

[17] A. Gent, Detachment of an elastic matrix from a rigid spherical inclusion. Journal of Materials Science, 1980. 15(11): pp.2884-2888.

DOI: 10.1007/bf00550559

Google Scholar