[1]
R.N. Rothon, The high performance fillers market and the position of precipitated calcium carbonate and silica. Proceedings of high filler 2007, Hamburg, Germany, (2007).
Google Scholar
[2]
J.E. Otterstedt and D.A. Brandreth, Small particles technology. 1998: Springer.
Google Scholar
[3]
J. Cho, M. Joshi, and C. Sun, Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Composites Science and Technology, 2006. 66(13): p.1941-(1952).
DOI: 10.1016/j.compscitech.2005.12.028
Google Scholar
[4]
N. Chisholm, H. Mahfuz, V.K. Rangari, A. Ashfaq, and S. Jeelani, Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Composite structures, 2005. 67(1): pp.115-124.
DOI: 10.1016/j.compstruct.2004.01.010
Google Scholar
[5]
L. Jiang, Y. Lam, K. Tam, T. Chua, G. Sim, and L. Ang, Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer, 2005. 46(1): pp.243-252.
DOI: 10.1016/j.polymer.2004.11.001
Google Scholar
[6]
S. Mishra, S. Sonawane, and R. Singh, Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP‐nano CaCO3 composites. Journal of Polymer Science Part B: Polymer Physics, 2004. 43(1): pp.107-113.
DOI: 10.1002/polb.20296
Google Scholar
[7]
B. Pukanszky and G. VÖRÖS, Mechanism of interfacial interactions in particulate filled composites. Composite Interfaces, 1993. 1(5): pp.411-427.
DOI: 10.1163/156855493x00266
Google Scholar
[8]
Y. Nakamura, M. Yamaguchi, M. Okubo, and T. Matsumoto, Effect of particle size on mechanical properties of epoxy resin filled with angular‐shaped silica. Journal of applied polymer science, 2003. 44(1): pp.151-158.
DOI: 10.1002/app.1992.070440116
Google Scholar
[9]
C. Verbeek, The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites. Materials Letters, 2003. 57(13): p.1919-(1924).
DOI: 10.1016/s0167-577x(02)01105-9
Google Scholar
[10]
Y. Dong, D. Chaudhary, C. Ploumis, and K.T. Lau, Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Composites Part A: Applied Science and Manufacturing, 2011. 42(10): pp.1483-1492.
DOI: 10.1016/j.compositesa.2011.06.015
Google Scholar
[11]
K. Yang, Q. Yang, G. Li, Y. Sun, and D. Feng, Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Materials letters, 2006. 60(6): pp.805-809.
DOI: 10.1016/j.matlet.2005.10.020
Google Scholar
[12]
Y. Ou, F. Yang, and Z.Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science Part B: Polymer Physics, 1998. 36(5): pp.789-795.
DOI: 10.1002/(sici)1099-0488(19980415)36:5<789::aid-polb6>3.0.co;2-g
Google Scholar
[13]
H. He, K. Li, J. Wang, G. Sun, Y. Li, and J. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Materials & Design, 2011. 32(8): pp.4521-4527.
DOI: 10.1016/j.matdes.2011.03.026
Google Scholar
[14]
C.K. Lam, H. Cheung, K. Lau, L. Zhou, M. Ho, and D. Hui, Cluster size effect in hardness of nanoclay/epoxy composites. Composites Part B: Engineering, 2005. 36(3): pp.263-269.
DOI: 10.1016/j.compositesb.2004.09.006
Google Scholar
[15]
B. Pokroy, J. Fieramosca, R. Von Dreele, A. Fitch, E. Caspi, and E. Zolotoyabko, Atomic structure of biogenic aragonite. Chemistry of materials, 2007. 19(13): pp.3244-3251.
DOI: 10.1021/cm070187u
Google Scholar
[16]
D. He and B. Jiang, The elastic modulus of filled polymer composites. Journal of applied polymer science, 2003. 49(4): pp.617-621.
DOI: 10.1002/app.1993.070490408
Google Scholar
[17]
A. Gent, Detachment of an elastic matrix from a rigid spherical inclusion. Journal of Materials Science, 1980. 15(11): pp.2884-2888.
DOI: 10.1007/bf00550559
Google Scholar