Effect of Catalyst Calcination Temperature on the Synthesis of MWCNTs-Talc Hybrid Compound Using CVD Method

Article Preview

Abstract:

Carbon nanotubes-talc (CNTs-talc) hybrid compound has been successfully synthesized via chemical vapour deposition (CVD) method. A gas mixture of methane/nitrogen (CH4/N2) was used as the carbon source and nickel as the metal catalyst for the growth of CNT hybrid compound. Talc works as substrate or support material which is combined with nickel to form a complex metal-talc catalyst that will react with carbon source to produce the hybrid compound. To study the effect of different calcinations temperature, four different calcinations temperature, 300 °C (C-talc300), 500 °C (C-talc500), 700 °C (C-talc700) and 900 °C (C-talc900) were used. Among these four calcination temperatures for synthesis the multi-walled carbon nanotubes (MWCNTs), C-talc500 is the most optimum calcination temperature to perform catalytic decomposition by reacting in methane atmosphere at 800 °C to produce the CNT-talc hybrid compound.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

63-67

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Balasubramanian, R. Sordan, M. Burghard and K. Kern: Nano Lett. Vol. 4 (2004), p.827.

Google Scholar

[2] Q. Cao and J.A. Rogers: Nano Res. Vol. 1 (2010), p.259.

Google Scholar

[3] R.H. Baughman, A.A. Zakhidov and W.A.D. Heer: Science Vol. 297 (2002), p.787.

Google Scholar

[4] A.A. Shvedova, E.R. Kisin, D. Porter, P. Schulte, V.E. Kagan, B. Fadeel and V. Castranova: Pharmacol. Ther. Part A Vol. 121 (2009), p.192.

DOI: 10.1016/j.pharmthera.2008.10.009

Google Scholar

[5] H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. -P. Briand, M. Prato, S. Muller and A. Bianco: Nano Lett. Vol. 6 (2006), p.1522.

DOI: 10.1021/nl061160x

Google Scholar

[6] A. Allaouia, S. Baia, H.M. Cheng and J.B. Bai: Compos. Sci. Technol. Vol. 62 (2002), p. (1993).

Google Scholar

[7] P. -C. Ma, N.A. Siddiqui, G. Marom, and J. -K. Kim: Composites Part A Vol. 41 (2010), p.1345.

Google Scholar

[8] W. -D. Zhang, I. Y. Phang and T. X. Liu: Adv. Mater. Vol. 18 (2006), p.73.

Google Scholar

[9] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis and R.C. Haddon: Adv. Mater. Vol. 20 (2008), p.4740.

Google Scholar

[10] H.G.B. Premalal, H. Ismail, A. Baharin: Polym. Test. Vol. 21 (2002), p.833.

Google Scholar

[11] Z. Al-Hassany: eXPRESS Polymer Letters Vol. 4 (2010), p.79.

Google Scholar

[12] M.H.A. Kudus, H.M. Akil, H. Mohamad, L.E. Loon: J. Alloys Compd. Vol. 509 (2011), p.2784.

Google Scholar