[1]
U. Gurmendi, J. I. Eguiazabal, and J. Nazabal, Structure and properties of nanocomposites with a poly(trimethylene terephthalate) matrix, European Polymer Journal, vol. 44, pp.1686-1695, (2008).
DOI: 10.1016/j.eurpolymj.2008.04.001
Google Scholar
[2]
F. -C. Chiu, H. -Z. Yen, and C. -C. Chen, Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer, Polymer Testing, vol. 29, pp.706-716, (2010).
DOI: 10.1016/j.polymertesting.2010.05.013
Google Scholar
[3]
I. A. S.M. Ali Dadfar, S.M. Reza Dadfar, M. Vosoughi, Studies on the oxygent barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acatate copolymer as a new type of compatibilizer, Materials and Design, vol. 32, pp.1806-1813, (2011).
DOI: 10.1016/j.matdes.2010.12.028
Google Scholar
[4]
R. Broska, N. C. Billingham, and P. K. Fearon, Accelerating effect of poly(methyl methacrylate) on rubber oxidation, Part 1: A chemiluminescence study, Polymer Degradation and Stability, vol. 93, pp.1100-1108, (2008).
DOI: 10.1016/j.polymdegradstab.2008.03.012
Google Scholar
[5]
A. Shojaei and M. Fereydoon, Taguchi analysis of extrusion variables and composition effects on the morphology and mechanical properties of EPR-g-MA toughened polyamide 6 and its composite with short glass fiber, Materials Science and Engineering: A, vol. 506, pp.45-57, (2009).
DOI: 10.1016/j.msea.2008.11.025
Google Scholar
[6]
Kusmono, Z. A. Mohd Ishak, W. S. Chow, T. Takeichi, and Rochmadi, Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites, European Polymer Journal, vol. 44, pp.1023-1039, (2008).
DOI: 10.1016/j.eurpolymj.2008.01.019
Google Scholar
[7]
L. F. Valadares, C. A. P. Leite, and F. Galembeck, Preparation of natural rubber–montmorillonite nanocomposite in aqueous medium: evidence for polymer–platelet adhesion, Polymer, vol. 47, pp.672-678, (2006).
DOI: 10.1016/j.polymer.2005.11.062
Google Scholar
[8]
S. Y. E. Noun, S. H. Ahmad, R. Rasid, and Y. C. Hoke, IMPACT TOUGHNESS AND MORPHOLOGY STUDY ON REACTIVE RUBBER TOUGHENED EPOXY, Malaysia Polymer International Conference (MPIC 2009), p.7, (2009).
Google Scholar
[9]
C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, and Z. Peng, Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber, Materials & Design, vol. 45, pp.198-205, (2013).
DOI: 10.1016/j.matdes.2012.09.024
Google Scholar
[10]
G. Jayalatha and S. K. N. Kutty, Effect of short nylon-6 fibres on natural rubber-toughened polystyrene, Materials & Design, vol. 43, pp.291-298, (2013).
DOI: 10.1016/j.matdes.2012.05.020
Google Scholar
[11]
H. Balakrishnan, A. Hassan, M. U. Wahit, A. A. Yussuf, and S. B. A. Razak, Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties, Materials & Design, vol. 31, pp.3289-3298, (2010).
DOI: 10.1016/j.matdes.2010.02.008
Google Scholar
[12]
A. Zabaleta, I. González, J. I. Eguiazábal, and J. Nazábal, Rubber toughening of poly(ether imide) by modification with poly(butylene terephthalate), European Polymer Journal, vol. 45, pp.466-473, (2009).
DOI: 10.1016/j.eurpolymj.2008.10.022
Google Scholar
[13]
B. Wang, X. Wang, Y. Shi, G. Tang, Q. Tang, L. Song, and Y. Hu, Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer, Radiation Physics and Chemistry, vol. 81, pp.308-315, (2012).
DOI: 10.1016/j.radphyschem.2011.10.021
Google Scholar
[14]
S. C. Tjong and S. P. Bao, Fracture toughness of high density polyethylene/SEBS-g-MA/montmorillonite nanocomposites, Composites Science and Technology, vol. 67, pp.314-323, (2007).
DOI: 10.1016/j.compscitech.2006.08.006
Google Scholar
[15]
N. T. Dintcheva, G. Filippone, F. P. La Mantia, and D. Acierno, Photo-oxidation behaviour of polyethylene/polyamide 6 blends filled with organomodified clay: Improvement of the photo-resistance through morphology modification, Polymer Degradation and Stability, vol. 95, pp.527-535, (2010).
DOI: 10.1016/j.polymdegradstab.2009.12.021
Google Scholar