[1]
Mohd Salleh, M.A.A., et al., Wettability, Electrical and Mechanical Properties of 99. 3Sn-0. 7Cu/Si3N4 Novel Lead-free NanocompositeSolder. Advanced Materials Research, 2011. 277(1): pp.106-111.
Google Scholar
[2]
Hongtao Ma, Jeffrey C. Suhling (2009). A Review of Mechanical Properties of Lead-free Solders For Electronic Packaging, J Mater Sci, p.1141–1158.
DOI: 10.1007/s10853-008-3125-9
Google Scholar
[3]
Alam, M.E. and M. Gupta, Effect of addition of nano-copper and extrusion temperature on the microstructure and mechanical response of tin. Journal of Alloys and Compounds, 2009. 490(1-2): pp.110-117.
DOI: 10.1016/j.jallcom.2009.09.170
Google Scholar
[4]
Alam, M.E., S.M.L. Nai, and M. Gupta, Development of high strength Sn-Cu solder using copper particles at nanolength scale. Journal of Alloys and Compounds, 2009. 476(1-2): pp.199-206.
DOI: 10.1016/j.jallcom.2008.09.061
Google Scholar
[5]
Gupta, X.L.Z. a.M., Development of lead-free Sn-0. 7Cu/Al2O3 nanocomposite solders with superior strength. Journal of Physics D: Applied Physics, 2008. 41(9): p.095403.
DOI: 10.1088/0022-3727/41/9/095403
Google Scholar
[6]
Nai, S.M.L., J. Wei, and M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Materials Science and Engineering: A, 2006. 423(1-2): pp.166-169.
DOI: 10.1016/j.msea.2005.10.072
Google Scholar
[7]
Nai, S.M.L., J. Wei, and M. Gupta, Influence of ceramic reinforcements on the wettability and mechanical properties of novel lead-free solder composites. Thin Solid Films, 2006. 504(1-2): pp.401-404.
DOI: 10.1016/j.tsf.2005.09.057
Google Scholar
[8]
Babaghorbani, P., S.M.L. Nai, and M. Gupta, Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders. Journal of Alloys and Compounds, 2009. 478(1-2): pp.458-461.
DOI: 10.1016/j.jallcom.2008.11.074
Google Scholar
[9]
Mohan Kumar, K., V. Kripesh, and A.A.O. Tay. Sn-Ag-Cu lead-free composite solders for ultra-fine-pitch wafer-level packaging. in Electronic Components and Technology Conference, 2006. Proceedings. 56th. (2006).
DOI: 10.1109/ectc.2006.1645653
Google Scholar
[10]
Zhong, X.L. and M. Gupta. Effect of Type of Reinforcement at Nanolength Scale on the Tensile Properties of Sn-0. 7Cu Solder Alloy. in Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th. (2008).
DOI: 10.1109/eptc.2008.4763510
Google Scholar
[11]
Nai, S.M.L., et al. Enhancing the properties of a lead-free solder with the addition of Ni-coated carbon nanotubes. in Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP '09. International Conference on. (2009).
DOI: 10.1109/icept.2009.5270691
Google Scholar
[12]
Nai, S., et al., Using Microwave-Assisted Powder Metallurgy Route and Nano-size Reinforcements to Develop High-Strength Solder Composites. Journal of Materials Engineering and Performance, 2010. 19(3): pp.335-341.
DOI: 10.1007/s11665-009-9481-z
Google Scholar
[13]
Kangooie, M., R. Mahmudi, and A.R. Geranmayeh, Impression Creep of a Lead-Free Sn-1. 7Sb-1. 5Ag Solder Reinforced by Submicron-Size Al2O3 Particles. Journal of Electronic Materials, 2009. 39(2): pp.215-222.
DOI: 10.1007/s11664-009-0971-4
Google Scholar
[14]
German, R.M., Powder metallurgy science. 2nd ed. 1994, Princeton, N.J.: Metal Powder Industries Federation (MPIF).
Google Scholar