Studies on Sodium Ion Conducting Gel Polymer Electrolytes

Article Preview

Abstract:

Sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host were prepared using the solution casting technique. Sodium trifluoromethane-sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as the solvent plasticizer. The GPE films were found to be stable up to temperature of 145 °C as shown by TGA analysis. The AC impedance study show that the optimum conductivity of 2.50 x 10-3 S cm-1 at room temperature is achieved for the film containing 20 wt.% of NaCF3SO3 salt. The temperature dependence of conductivity obeys VTF relation in the temperature range of 303 K to 373 K.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

786-792

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. A. J. Rand, R. Woods, R. M. Dell, Batteries for Electrical Vehicles, Research Studies Press Ltd., England (1998).

Google Scholar

[2] R. M. Dell: Solid State Ionics Vol. 134 (2000), p.139.

Google Scholar

[3] A. Bhide, K. Hariharan: Eur. Polym. J. Vol. 43 (2007), p.4253.

Google Scholar

[4] J.S. Kumar, A.R. Subrahmanyam, M.J. Reddy, U.V.S. Rao: Mater. Lett. Vol. 60 (2006), p.3346.

Google Scholar

[5] Ch.V.S. Reddy, X. Han, Q.Y. Zhu, L.Q. Mai, W. Chen: Eur. Polym. J. Vol. 42 (2006) p.3114.

Google Scholar

[6] V. M. Mohan & V. Raja & A. K. Sharma & V. V. R. Narasimha Rao: Ionics Vol. 12 (2006), p.219.

Google Scholar

[7] R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M. S. Bhuvaneswari: J. Power Sources Vol. 134 (2004), p.235.

Google Scholar

[8] N. T. Kalyana Sundaram, A. Subramania: Nano, Electrochim. Acta Vol. 52 (2007), p.4987.

Google Scholar

[9] K. M. Kim, N. G. Park, K. S. Ryu, S. H. Chang: Electrochim. Acta Vol. 51 (2006), p.5636.

Google Scholar

[10] J. Y. Xi, X. P. Qiu, L. Q. Chen: Solid State Ionics Vol. 177 (2006), p.709.

Google Scholar

[11] M. Wachtler, D. Ostrovskii, P. Jacobsson, B. Scrosati: Electrochim. Acta Vol. 50 (2004), p.357.

Google Scholar

[12] H. P. Zhang, P. Zhang, Z. H. Li, M. Sun, Y. P. Wu, H.Q. Wu: Electrochem. Commun. Vol. 9 (2007), p.1700.

Google Scholar

[13] A. Subramania, N. T. K. Sundaram, A. R. S. Priya, G. V. Kumar: J. Membr. Sci. Vol. 294 (2007), p.8.

Google Scholar

[14] Y. X. Jiang, Z. F. Chen, Q. C. Zhuang, J. M. Xu, Q. F. Dong, L. Huang, S. G. Sun: J. Power Sources Vol. 160 (2006), p.1320.

Google Scholar

[15] W. J. Lee and S. H. Kim: Macromo. Res. Vol. 16 (3) (2008), p.247.

Google Scholar

[16] M. M. Nasef, H. Saidi: Mater. Chem. Phys. Vol. 25 (2005), in press.

Google Scholar

[17] D. Kumar, S. A. Hashmi: Solid State Ionics Vol. 181 (2010), p.416.

Google Scholar

[18] H. H. Kuo, W. C. Chen, T. C. Wen: J. Power Source Vol. 110 (2002), p.27.

Google Scholar

[19] S. Ramesh, S. C. Lu: Journal of Molecular Liquids Vol. 177 (2013) p.73.

Google Scholar

[20] C. S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, P. C. Angelo: Phys. B Vol. 393 (2007), p.11.

Google Scholar

[21] G. S. Fulcher: J. Am Ceram. Soc. Vol. 8 (1925), p.339.

Google Scholar

[22] M. H. Cohen, D. Turnball: J. Chem. Phys. Vol. 31 (1959), p.1164.

Google Scholar

[23] G. S. Grest, M. H. Cohen: Phys. Rev. B Vol. 21 (1980), p.4113.

Google Scholar