Lignin Loading Effect on Biodegradability and Nitrogen Release Properties of Urea Modified Tapioca Starch in Wet Soil

Article Preview

Abstract:

Plant based biopolymers are abundantly and easily available naturally biodegradable raw materials to prepare slow release nitrogen technologies. To test the lignin loading effect on biodegradability of the slow release fertilizer (SRF) and nitrogen release applications, a pot experiment under real soil conditions was conducted. Lignin at different loading percentages 5%, 10%, 15% and 20% were mixed with urea-modified tapioca starch acting as slow release fertilizer (SRF). Increasing the percentage of lignin to starch reduced the weight loss with improved nitrogen slow release properties in wet soil. Soil microbial biomass was negatively correlated with increase of lignin percentages. Lignin is a low cost biopolymer and can be used to improve starch biodegradation and its slow release nitrogen properties.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

798-802

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Wu and M. Liu, Carbohydr. Polym., Vol. 72 (2008), pp.240-247.

Google Scholar

[2] A. Jarosiewicz and M. Tomaszewska, J. Agric. Food Chem., Vol. 51(2003), pp.413-417.

Google Scholar

[3] M. Tomaszewska and A. Jarosiewicz, Desalination, Vol. 163(2004), pp.247-252.

Google Scholar

[4] X. Han, S. Chen and X. Hu, Desalination, Vol. 240 (2009), pp.21-26.

Google Scholar

[5] W. Mulder, R. Gosselink, M. Vingerhoeds, P. Harmsen and D. Eastham, Industr. Crops Prod, Vol. 34 (2011), pp.915-920.

DOI: 10.1016/j.indcrop.2011.02.011

Google Scholar

[6] S. Ariyanti, Z. Man and B. M. Azmi, Adv. Mater. Res., Vol. 626 (2013), pp.350-354.

Google Scholar

[7] M. V. Arcos-Hernandez, B. Laycock, S. Pratt, B. C. Donose, M. A. L. Nikolić, P. Luckman, A. Werker and P. A. Lant, Polym. Degrad. Stab., Vol. 97(2012), pp.2301-2312.

DOI: 10.1016/j.polymdegradstab.2012.07.035

Google Scholar

[8] J. Wu, R. G. Joergensen, B. Pommerening, R. Chaussod and P. C. Brookes, Soil Biol. Biochem., Vol. 22(1990), pp.1167-1169.

DOI: 10.1016/0038-0717(90)90046-3

Google Scholar

[9] N. Tudorachi, C. N. Cascaval, M. Rusu and M. Pruteanu, Polym. Test., Vol. 19(2000), pp.785-799.

Google Scholar

[10] K. P. R. Chowdary and M. Krishna, Int Pharm Nanotech, Vol. 1 (2008), pp.167-170.

Google Scholar

[11] E. Chiellini, A. Corti, S. D'Antone and N. C. Billingham, J. Pol. Env., Vol. 159(2007), p.169-178L. Chen, Z. Xie, X. Zhuang, X. Chen and X. Jing, Carbohydr. Polym., Vol. 72 (2008), pp.342-348.

Google Scholar