The Effect of Methylene Diphenyl Diisocyanate on the Nonisothermal Properties of Polylactic Acid/Elaeis guineensis Fibres Biocomposites

Article Preview

Abstract:

Biocomposites demands are significantly rising due to environmental regulations and concerns. However, incompatibility between the fibre and matrix is a major setback that diminishes the biocompostie properties. Therefore in this work, methylene diphenyl diisocynate (MDI) compatibilizers were used together with fibre surface treatment in order to increase compatibility between polylactic acid (PLA) and Elaeis Guineensis Fibres (EGF) biocomposite. Nonisothermal properties were investigated and it was found that, MDI increased compatibility of the PLA and EGF which led to the restriction of chain movements in the biocomposite. This restriction in chain mobility caused an increase the glass transition temperature and crystallization temperature and also reduced the degree of crystallinity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

823-827

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Oksman, M. Skrifvars and J.F. Selin, Natural fibers as reinforcement in polylactic acid (PLA) composites, Compos Sci Technol 63, (2003) 1317–1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[2] M.S. Huda, L.T. Drzal, A.K. Mohanty and M. Misra, Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study, Compos Sci Techol 6, (2006) 1813–1824.

DOI: 10.1016/j.compscitech.2005.10.015

Google Scholar

[3] S. Serizawa, K. Inoue, M. Iji, Kenaf-fiber-reinforced poly(lactic acid) used for electronic products, J. App. Polym. Sci., 100 (2006)618 – 624.

DOI: 10.1002/app.23377

Google Scholar

[4] K. Oksman and J.F. Selin, Plastics and composites from polylactic acid. In: F.T. Wallenberger and N. Weston, Editors, Natural fibers, plastics and composites, Kluwer Academic Publishers, Boston, (2004) 149–165.

DOI: 10.1007/978-1-4419-9050-1_10

Google Scholar

[5] B. Benjamin and J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Compos Sci Technol 68 (2008)1601–1607.

DOI: 10.1016/j.compscitech.2008.01.004

Google Scholar

[6] G.H. Yew, A.M. Mohd Yusof and Z.A. Mohd Ishak et al., Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polym Degrad Stab 90 (2005)488–500.

DOI: 10.1016/j.polymdegradstab.2005.04.006

Google Scholar

[7] M. J. John and S. Thomas, Biofibres and biocomposites, Carbohydrate Polymers, 71 (2008) 343-364.

DOI: 10.1016/j.carbpol.2007.05.040

Google Scholar

[8] R. Senawi, S. M. Alauddin, R. Mohd Saleh, and M. I. Shueb Polylactic Acid/Empty Fruit Bunch Fiber Biocomposite: Influence of Alkaline and Silane Treatment on the Mechanical Properties, International Journal of Bioscience, Biochemistry and Bioinformatics, 3(1) (2013).

DOI: 10.7763/ijbbb.2013.v3.164

Google Scholar

[9] A. K. Bledzki, A. A. Mamun, M. L. Gabor, V. S. Gutowski, The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2 (2008) 413-422.

DOI: 10.3144/expresspolymlett.2008.50

Google Scholar

[10] K. L. Fung, R. K. Y. Li, S. C. Tjong, Interface modification on the properties of sisal fibre reinforced polypropylene composites. Journal of Applied Polymer Science, 85 (2002) 169–176.

DOI: 10.1002/app.10584

Google Scholar

[11] D. Feng, D. F. Caulfiel, A. R. Sanadi, Effect of compatibiliser on the structure-property relationships of kenaf-fibre/polypropylenecomposites. Polymer Composites, 22 (2001) 506–517.

DOI: 10.1002/pc.10555

Google Scholar

[12] N. A. Ibrahim, S. N. A. Ahmad, W. M. Z. W. Yunus and K. Z. M. Dahlan, Effect of electron beam irradiation and poly(vinyl pyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite, Polymer Letters 3 (2009).

DOI: 10.3144/expresspolymlett.2009.29

Google Scholar

[13] M. S. Huda, L. T. Drzal, A. K. Mohanty and M. Misra, Effect of fiber surface treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers, Composites Science and Technology, vol. 68 (2008) 424-432.

DOI: 10.1016/j.compscitech.2007.06.022

Google Scholar

[14] Y. Xie, Callum A. S. Hill, Z. Xiao, H. Militz and C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites : Part A, 41 (2010)806-819.

DOI: 10.1016/j.compositesa.2010.03.005

Google Scholar

[15] Tao Yu, Jie Ren, Shumao Li, Hua Yuan and Yan Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Composites Part A, 41 (2010) 499-505.

DOI: 10.1016/j.compositesa.2009.12.006

Google Scholar

[16] S. S. Suradi, R. M. Yunus, M. D. H. Beg, M. Rivai and Z. A. M. Yusof, Oil Palm Bio-Fiber Reinforced Thermoplastic Composites-Effects of Matrix Modification on Mechanical and Thermal Properties, Journal of Applied Science, 10, (2010) 3271-3276.

DOI: 10.3923/jas.2010.3271.3276

Google Scholar

[17] Mohanty AK, Mubarak AK and Hinrichsen G, Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites, Composites Science Technology, 60 (2000) 1115-1124.

DOI: 10.1016/s0266-3538(00)00012-9

Google Scholar

[18] Tao Yu, Jie Ren, Shumao Li, Hua Yuan and Yan Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Composites Part A, 41 (2010) 499-505.

DOI: 10.1016/j.compositesa.2009.12.006

Google Scholar

[19] C. Chen, B. Fei, S. Peng, Y. Zhuang, L. Dong and Z. Feng, Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3- hydroxybutyrate), European Polymer Journal, 38, (2002) 1663-1670.

DOI: 10.1016/s0014-3057(02)00046-0

Google Scholar