Comparison Study in Consolidation of Yttria Reinforced Iron-Chromium Composites Using Conventional and Microwave Sintering Technique

Article Preview

Abstract:

This research is focused on studying the density and mechanical properties of iron-chromium composites consolidated by innovative rapid microwave sintering technology against conventionally sintered counterparts using slow heating crucible furnace. Another aim of this study is to assess the viability of yttria (Y2O3) ceramic particulates as reinforcement to the iron-chromium composites. Fabrication of iron-chromium-yttria composites consolidated in microwave furnace and conventional crucible furnace was successfully accomplished. Improvement of density is evident in microwave sintered composites. The Y2O3 addition significantly increases the hardness of the composite (118 Hv for microwave specimens as opposed to 110Hv for conventional specimens). The study also successfully established the viability of microwave sintering technique for consolidating iron based powder metallurgy composites by up to 80% reduction of sintering time.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

832-836

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tun, K. S. & Gupta, M. (2007). Compos Sci Technol (67) p.2657–2664.

Google Scholar

[2] Kang, S. J. L. (2005). Sintering densification, grain growth, and microstructure. Elsevier Butterworth-Heinemann.

Google Scholar

[3] Wong, W. L. E.; Karthik, S. & Gupta, M. (2005). J Mater Sci 40 pp.3395-3402.

Google Scholar

[4] German, R. M.; Bose, A.; Mani, S. S. (1992) . Metall. Trans. A 23, pp.211-219.

Google Scholar

[5] Padmavathi, C.; Agrawal, D., Upadhyaya. A. (2007). Scripta Materi 57 (7) pp.651-654.

Google Scholar

[6] Barnett, M. R.; Keshavarz, Z.; Beer, A. G. & Atwell, D. (2004). Acta Mater 52 (17) pp.5093-5103.

Google Scholar

[7] Garces, G.; DomÃnguez, F.; Pérez, P.; Caruana, G. & Adeva, P. (2006). J Alloy Compd (422) pp.293-298.

Google Scholar

[8] Hassan, S.F., Tun, K. S. & Gupta, M. (2011). J Alloy Compd 509 p.4341–4347.

Google Scholar

[9] Panda, S. S., Upadhyaya, A. & Agrawal, D. (2006). J Mater Sci 42 (3) pp.966-978.

Google Scholar

[10] Anklekar.

Google Scholar

[11] Shankar, J., Upadhyaya, A. & Balasubramaniam, R. (2004). Corros Sci 46 (2) pp.487-498.

Google Scholar

[12] Shamsuddin, S., Jamaludin, S. B., Hussain, Z. & Ahmad, Z.A. (2008). Journal of Physical Science Vol. 19 (1) pp.89-95.

Google Scholar

[13] Hassan, S.F., Tun, K. S. & Gupta, M. (2011). J Alloy Compd 509 p.4341–4347.

Google Scholar

[14] Garces, G., Rodriguez, M., Perez, P. & Adeva, P. (2006). Mat Sci Eng A (419) p.357–364.

Google Scholar

[15] Rahman, W., Shamsul, J. B. & Mazlee, M.N. (2012) Proceedings of Advanced Material Conference, pp.169-174.

Google Scholar

[16] Hampshire, S. & jack, K. S. (1981) Proc. Brit. Ceram. Soc. (31) pp.37-49.

Google Scholar

[17] Roy, R., Cheng, D., Gedevanishvili, S. (2005). Powder Metall (48) p.39.

Google Scholar

[18] Roy, R., Agrawal, D., Cheng, J. & Gedevanishivili, S. (1999). Nature (399) p.668.

Google Scholar