Effect of Volume Plasticizers on the Thermal Performance of Tacca leontopetaloides Starch Biopolymer

Article Preview

Abstract:

The effect of 10, 30 and 50 % volume of Olein oil, Glycerol and Crude Palm Oil (CPO) as plasticizer on the thermal performance of biopolymer has been investigated in this paper. The biopolymer was developed from a new source of starch, Tacca leontopetaloides, and natural rubber by using two roll-mill. Changes in functional groups and thermal performance of formulated bio-Thermoplastic elastomer (TPE) were analyzed by Fourier Transform Infrared (FTIR) and Thermogravimetric Analyzer (TGA). Increased volume of Olein oil and glycerol resulted to increasing strength of hydrogen bonding in the intermolecular TPEs, therefore it has high thermal resistant towards high temperature. Conversely, increased volume of CPO decreased the strength of hydrogen bonding in structural starch and CPO therefore TPE with CPO shows high degradability which possess up to 100 % weight reduction at 500 0C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

882-886

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Yu, K. Dean, and L. Li, Progress in Polymer Science, vol. 31, no. 6, (2006). p.576.

Google Scholar

[2] S.T. Ubwa, B.A. Anhwange, J.T. Chia, American Journal of Food Tech (2011).

Google Scholar

[3] T.I. Borokini, E.F. Lawyer, A.E. Ayodele, Nigeria, Egyptian Journal of Biology (13) (2011).

Google Scholar

[4] Meena, K.L., Yadav, B.L. Indian journal of Natural Products and Resources 1(4) (2010) p.512.

Google Scholar

[5] Manek, R. V., Kunle, O. O., Emeje, M. O., Builders, P., Rao, G. V. R., Lopez, G. P., & Kolling, W. M. Starch - StRke, 57(2), (2005) 55.

DOI: 10.1002/star.200400341

Google Scholar

[6] D.E. Kay, Root crops, 2nd Edn. In: Gooding E.G. B (Ed) Tropical Development and Research Institute, London, U. K (Now National Resources Institute, U.K. ) (1987) 380.

Google Scholar

[7] U.J. Ukpabi, E. Ukenye, A.O. Olojede, Journal of Food Tech 7(4) (2009) 135.

Google Scholar

[8] D. R. Lu, eXPRESS Polymer Letters, vol. 3, no. 6, (2009). 366.

Google Scholar

[9] L. P. B. M. Janssen and L. Mo, vol. 5, no. 1, (2006). 19.

Google Scholar

[10] M. Mitrus, International Agrophysics, vol. 19, (2005). 237.

Google Scholar

[11] Y. Zhang and C. Rempel, Retrogradation and Antiplasticization of Thermoplastic Starch (Intech open Publication, Canada 2009).

Google Scholar

[12] F. J. Rodriguez-Gonzalez, B. a. Ramsay, and B. D. Favis, Carbohydrate Polymers, vol. 58, no. 2, p.139–147, Nov. (2004).

Google Scholar

[13] E. S. and A. A. S, Taghvaei Ganjali, Fereshteh Motiee, Journal of Applied Chemical Researches, vol. 4, no. 14, (2010)53.

Google Scholar

[14] Chuayjuljit, S., & Eiumnoh, S. J. Sci. Res Chula. Univ, 26(2), (2001) 127.

Google Scholar

[15] Yang, J. H., Yu, J. G., & Ma, X. F. 17(1), Chinese Chemical Letters (2006). 133.

Google Scholar

[16] Gómez-Siurana, A. Marcilla, M. Beltran, I. Martinez, D. Berenguer, R. García-Martínez, T. Hernández-Selva. Thermochimica Acta (523) (2011) 161.

DOI: 10.1016/j.tca.2011.05.018

Google Scholar

[17] L. Gašparovič, Z. Koreňová, L. Jelemenský, PROCEEDINGS 36th International Conference of Slovak Society of Chemical Engineering (2009) Tatransk´e Matliare, Slovakia.

Google Scholar

[18] Valle´ s Lluch, A. Martı´nez Felipe, A. Ribes Greus, A. Cadenato, X. Ramis, J.M. Salla, J.M. Morancho, Journal of Applied Polymer Science, (96) (2005) 358.

DOI: 10.1002/app.21428

Google Scholar