[1]
Hashim, J., Looney, L., & Hashmi, M. S. J. (2002). Particle distribution in cast metal matrix composites — Part I. Journal of Materials Processing Technology, 123(January), 251-257.
DOI: 10.1016/s0924-0136(02)00098-5
Google Scholar
[2]
Balasundar I,T. Raghu (2010), Journal of Materials and Design, Effect of friction modelin numeric analysis of equal channel angular pressing process, Elsevier.
DOI: 10.1016/j.matdes.2009.05.029
Google Scholar
[3]
Balasundar, I., & Sriramamurthy, a. M. (2008). On the strain distribution during extrusion through a bent channel. Materials Science and Engineering: A, 491(1-2), 501–506. doi: 10. 1016/j. msea. 2008. 04. 024.
DOI: 10.1016/j.msea.2008.04.024
Google Scholar
[4]
Callister, William D; David G. Rethwisch (2007), Materials Science and Engineering An Introduction 7th edition, John Wiley & Sons, Inc.
Google Scholar
[5]
Karpuz, P., Simsir, C., & Gur, C. H. (2009). Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing—A finite-element study. pdf. Material Science and Engineering A, 503, 148–151.
DOI: 10.1016/j.msea.2008.01.095
Google Scholar
[6]
LLyod, D. J., Lagage, H., Mcleod, A., & Morris, P. L. (1989). Microstructural Aspects of Aiuminium-Silicon Carbide Particulate Composites Produced by a Casting Method*. Materials Science and Engineering, 107, 73-80.
DOI: 10.1016/0921-5093(89)90376-6
Google Scholar
[7]
Luis, C. J, L. -P., Luri-Irigoyen, R., & Gaston-Ochoa, D. (2004).
Google Scholar
[8]
R. Luri ,C.J. LuisPérez, D. Salcedo, I. Puertas, J. León, I. Pérez J.P. Fuertes ; Journal of Materials Processing Technology; Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries, Elsevier.
DOI: 10.1016/j.jmatprotec.2010.08.032
Google Scholar
[9]
Sabirov, I., Kolednik, O., Valev, R. Z., & R, P. (2005). Equal channel angular pressing of metal matrix composites : Effect on particle distribution and fracture toughness. Acta Materialia, 53, 4919-4930. doi: 10. 1016/j. actamat. 2005. 07. 010.
DOI: 10.1016/j.actamat.2005.07.010
Google Scholar
[10]
Stoica, G. M., Fielden, D. E., Mcdaniels, R., Liu, Y., Huang, B., Liaw, P. K., Xu, C., et al. (2005).
Google Scholar
[11]
Stolyarov, V. V, Lapovok, R., Brodova, I. G., & Thomson, P. F. (2003). Ultrafine-grained AlÁ 5 wt . % Fe alloy processed by ECAP with backpressure. Materials Science, 357, 159–167. doi: 10. 1016/S0921-5093(03)00215-6.
DOI: 10.1016/s0921-5093(03)00215-6
Google Scholar
[12]
Suo Tao, Li Yulong, Deng Qion, Liu Yuanyong, Optimal pressing route for continued equal channel pressing by finite element analysis, MaterSciEngA, 2007; 466: 166–71.
DOI: 10.1016/j.msea.2007.02.068
Google Scholar
[13]
Patil Basavara jV, Chak kingal Uday, Prasanna Kumar TS, Study of channel angle influence on material flow and strain inhomogenity in equal channel angular pressing using 3D finite element simulation. J Mater Process Technol 2009; 209: 89–95.
DOI: 10.1016/j.jmatprotec.2008.01.031
Google Scholar
[14]
Valiev, R. Z. (1997). Structure and mechanical properties of ultrafune-grained metals. Materials.
Google Scholar
[15]
Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51, 881–981. doi: 10. 1016 /j. pmatsci. 2006. 02. 003.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar