[1]
Matthews David A, Effler Steven W. Decreases in pollutant loading from residual soda ash production waste, J. Water, Air, and Soil Pollution. 146(2003) 55–73.
Google Scholar
[2]
Guihua Hou. Firing white cement by caustic, J. Chemical Environmental Protection. 23(2003) 161-164.
Google Scholar
[3]
Chaoxu Yang, Jianguang Xie. Study feasibility on using soda residue, waste concrete modified silty soil as embankment, J. Highway Engineering. 35(2010) 72-75.
Google Scholar
[4]
Jiujun Yang, Xie Wu, Zhang Lei, etc. Study on preparation experiment of mortar mixed with fly ash-soda residue-cement, J. Bulletin of the Chinese Ceramic Society. 29(2010) 1211-1216.
Google Scholar
[5]
Wang Qing, Lijiu Wang, Hongmei Ai. The preparation of high strength ceramsies with soda residue and fly ash, J. Concrete. (2000) 27-29.
Google Scholar
[6]
Roman Loser, Barbara Lothenbach, Andreas Leemann et al. Chloride resistance of concrete and its bonding capacity-Comparison between experimental results and thermodynamic modeling, J. Cement and Concrete Composites. 32(2010) 34-42.
DOI: 10.1016/j.cemconcomp.2009.08.001
Google Scholar
[7]
T. Cheewaket, C. Jaturapitakkul, W. Chalee. Long term performance of chloride binding capacity in fly ash concrete in a marine environment, J. Construction and Building Materials. 24(2010) 1352-1357.
DOI: 10.1016/j.conbuildmat.2009.12.039
Google Scholar
[8]
M.D.A. Thomas, R.D. Hooton, A. Scott, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste, J. Cement and Concrete Research. 42(2012) 1-7.
DOI: 10.1016/j.cemconres.2011.01.001
Google Scholar
[9]
Shuping Chen. Research on improving the performance of concrete combining the chloride ion, J. Central south university. (2007) 2-7.
Google Scholar
[10]
A, K. Suryananshi, R. Narayan Swamy. Stability of friedel's salt in carbonated concrete structural elements, J. Cement and concrete research. 26(1996) 729-741.
DOI: 10.1016/s0008-8846(96)85010-1
Google Scholar
[11]
Anik Delagrave, Jacques Marchand, Jean-Pierre Ollivier, et al. Chloride binding capacity of various hydrated cement paste systems, J. Advn Cem Bas Mat. 6(1997) 28-35.
DOI: 10.1016/s1065-7355(97)90003-1
Google Scholar
[12]
Shaodong Wang, Yubin Huang, Wang zhi. The influence caused by components of the cement on the ability to immobilizate chloride ions by concrete, J. Journal of silicate. 28(2000) 570-574.
Google Scholar
[13]
Arya C, Buenfeld N R, Newman J B. Factors influencing chloride-binding in concrete, J. Cem Concr Res. 20(1990) 291-300.
DOI: 10.1016/0008-8846(90)90083-a
Google Scholar
[14]
Wei-Sheng Chen, Fang-Chi Chang, Yun-Hwei Shen, er al. Removal of chloride from MSWI fly ash, J. Journal of hazardous materials. (2012) 116-120.
Google Scholar
[15]
Ahmet Raif Boga, Liker Bekir Topcu. Influence of fly ash on corrosion resistance and chloride ion permeability of concrete, J. Construction and Building Materials. 38 (2012) 258-264.
DOI: 10.1016/j.conbuildmat.2011.12.106
Google Scholar
[16]
A. Fernandez-Jimenez, A. Palomo. Composition of Microstructure of alkali activated fly ash binder: Effect of activator, J. Cement and Concrete Research. 35(2005) 1984-(1986).
DOI: 10.1016/j.cemconres.2005.03.003
Google Scholar
[17]
Frantisek Skvara, Lubomir Kopecky, Vit Smilauer, er al. Material and structural characterization of alkali activated low-calcium brown coal fly ash, J. Hazardous Mater. 168(2009) 711-720.
DOI: 10.1016/j.jhazmat.2009.02.089
Google Scholar
[18]
Junliang Fang, Wenxiong Lu, Caixuan Xu, The research progress on excitation mechanism and technology of activity fly ash, J. Journal of Shanghai University. 8(2002) 255-260.
Google Scholar
[19]
Li Hui,Zhuge Lijun,Shi Shi, er al. Hydration products of fly ash based cementing material activated by NaOH, J. Journal of the Chinese ceramic society. 40(2012) 234-239.
Google Scholar