Hardened Properties of Lime Based Mortars Produced from Kaolin Wastes

Article Preview

Abstract:

Many studies have been developed about the use of wastes as construction materials. The higher volume of waste generated by many types of industries has caused many environmental problems. Most of these wastes have not been placed in adequate sites, or even been reused. In Brazil the industries that produces kaolin generates a lot of wastes. Studies have been carried out on the use of kaolin wastes as replacement material for Portland cement concretes and mortars; and only few ones have studied it in hydraulic mortars for restoration of historical buildings. In this work kaolin wastes were studied as pozzolanic and inert material in lime mortars. Two lime/metakaolin ratios and different proportions of kaolin wastes as replacement of river sand were studied. Hardened properties of these mortars like compressive and tensile strength and water absorbed by capillarity were evaluated up to 180 days of curing. Microstructural characteristics also were assessed using thermal analysis (TG/DTG) and x-rays diffraction (XRD). Some mortars presented the highest strengths at 90 days of curing, and at 180 days their resistances dropped. The major phases found by microstructural analysis were monocarboaluminate (C4ACH11) and calcium carbonate (CaCO3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-296

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] COLLEPARDI, M. Degradation and restoration of masonry walls of historical buildings. Materials and Structures, vol. 23, 1990, pp.81-102.

DOI: 10.1007/bf02472568

Google Scholar

[2] MOROPOULOU, A.; BAKOLAS, A.; MOUNDOULAS, P.; AGGELAKOPOULOU, E. AND ANAGNOSTOPOULOU, S. Strength development and lime reaction in mortars for repairing historic masonries, Cement Concrete Research,. Vol. 27, p.289–294, (2005).

DOI: 10.1016/j.cemconcomp.2004.02.017

Google Scholar

[3] VEIGA, M. R.; VELOSA, A. and MAGALHÃES, A. Experimental applications of Mortars wtih pozzolanic additions: Characterization na performance evaluation, Construction and Building Materials, vol. 23, pp.318-327, (2009).

DOI: 10.1016/j.conbuildmat.2007.12.003

Google Scholar

[4] PERA, J.; AMROUZ A. Development of Highly Reactive Metakaolin from Paper Sludge. Advanced Cement Based Materials, vol. 7, (1998).

DOI: 10.1016/s1065-7355(97)00016-3

Google Scholar

[5] BARATA, M. S. DAL MOLIN, D. C. C. Avaliação preliminar do resíduo caulinítico das indústrias de beneficiamento de caulim como matéria-prima na produção de uma metacaulinita altamente reativa. Ambiente Construído, v. 2. nº 1, ANTAC, Porto Alegre, (2002).

DOI: 10.1590/s0366-69132012000100007

Google Scholar

[6] SOUZA, P. S. L. Verificação da influência do uso de metacaulim de alta reatividade nas propriedades mecânicas do concreto de alta resistência. 2003. Tese (Doutorado em Engenharia Civil) UFRG, Porto Alegre, (2003).

DOI: 10.11606/d.88.2017.tde-11072017-144504

Google Scholar

[7] NÓBREGA, A. F., DANTAS, K.C.B., OLIVEIRA, M.P., TORRES, S.M., BARBOSA, N.P. Avaliação do desempenho de argamassas com o uso de rejeito de caulim industrial como material de substituição do cimento Portland. In: Conferência Interamericana sobre Materiais e Tecnologias não-convencionais na Construção Ecológica e Sustentável, 2005, Rio de Janeiro. Anais.. Rio de Janeiro, IAC-NOCMAT, 2005 – CD-ROM.

DOI: 10.47749/t/unicamp.2011.845228

Google Scholar

[8] NÓBREGA, A. F. Potencial de Aproveitamento de Resíduos de Caulim Paraibano Para o Desenvolvimento de Argamassas de Múltiplo Uso. 2007. Dissertação (Mestrado em Engenharia Urbana), Universidade Federal da Paraíba, João Pessoa-PB, (2007).

DOI: 10.18265/1517-03062015v1n15p71-81

Google Scholar

[9] NÓBREGA, A. F.; SOUSA, P. DE; MARINHO, M. E CARNEIRO, A. M. P. Estudo das Propriedades das Argamassas de Cal: Influência do Tipo de Metacaulim. 3rd Portuguese Congress on Construction Mortars. Anais.. Lisboa, Portugal. Março de (2010).

Google Scholar

[10] BONILLA, T. M. A.; FERREIRA, A. F.; NÓBREGA, A. F; SILVA, E. C. R.; SOUZA, M. L., CARNEIRO, A. M. P., Lime-metakaolin mortars applied on the Soledade palace, Recife, Brazil. In: 2nd Historic Mortars Conference HMC. Proceedings.. Prague, Czech Republic, September de (2010).

Google Scholar

[11] VEJMELKOVÁ, E.; KEPPERT, M.; ROVNANÍKOVÁ, P.; ZBYNEK, K.; CERNÝ, R., Application of burnt clay shale as pozzolan addition to lime mortar. Cement and Concrete Composites, Vol. 34, pp.486-92, (2012).

DOI: 10.1016/j.cemconcomp.2012.01.001

Google Scholar

[12] SERRY, M. A.; TAHA, A. S.; EL-HEMALY, S. A. S. e EL-DIDAMONY, H., Metakaolin-lome hydration products. Thermochimica Acta. Vol. 79, pp.103-110, (1984).

DOI: 10.1016/0040-6031(84)87097-5

Google Scholar

[13] SILVA, P. S. e GLASSER, F. P., Phase relations in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin – calcium hydroxide hydration. Cement and Concrete Research. Vol. 23, pp.627-639, (1993).

DOI: 10.1016/0008-8846(93)90014-z

Google Scholar

[14] CABRERA, J. e ROJAS, M. F. Mechanism of hydration of the Metakaolin-lime-water system, Cement and Concrete Research, Vol. 31, pp.177-182, (2001).

DOI: 10.1016/s0008-8846(00)00456-7

Google Scholar

[15] ROJAS, M. F. e CABRERA, J., The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems. Cement and Concrete Research. Vol. 32, pp.133-138, (2002).

DOI: 10.1016/s0008-8846(01)00642-1

Google Scholar

[16] FRÍAS ROJAS, M. e SÁNCHEZ ROJAS, M. I., The effect of high curing temperature on the reaction kinectics in MK/lime and MK-blended cement matrices at 600C. Cement and Concrete Research. Vol. 33, pp.643-649, (2003).

DOI: 10.1016/s0008-8846(02)01040-2

Google Scholar

[17] BAKOLAS, A.; AGGELAKOPOULOU, MAROPOULOU, A. AND ANAGNOSTOPOULOU, S. Evaluation of Pozzolanic Activity and Physico-Mechanical Characteristcs in Metakaolin-Lime Pastes. Journal of Thermal Analysis and Calorimetry, vol. 84, pp.157-163, (2006).

DOI: 10.1007/s10973-005-7262-y

Google Scholar

[18] ROJAS, M. F. Study of Hydrated Phases Present in MK-Lime System Cured at 60ºC and 60 Months of Reaction, Cement and Concrete Research, Vol. 36, pp.827-831, (2006).

DOI: 10.1016/j.cemconres.2006.01.001

Google Scholar

[19] GARCÍA, R.; VILLA, R. V. DE LA; RODRÍGUEZ, O. AND FRÍAS, M. Mineral Phases formation on the pozzolan/lime/water system, Applied Clay Science vol. 43, pp.331-335, (2009).

DOI: 10.1016/j.clay.2008.09.013

Google Scholar

[20] AGGELAKOPOULOU, E.; BAKOLAS, A.; MOROPOULOU, A., Properties of lime-metakaolin mortars for restoration of historic mansories. Applied Clay Science. Vol. 53, pp.15-19, (2011).

DOI: 10.1016/j.clay.2011.04.005

Google Scholar

[21] GAMEIRO, A.; SANTOS SILVA, A.; VEIGA, R.; VELOSA, A., Hydration Products of lime-metakaolin pastes at ambient temperature with ageing. Themochimica Acta. vol. 535, pp.36-41, (2012).

DOI: 10.1016/j.tca.2012.02.013

Google Scholar

[22] CIZER, O., Competition between carbonation and hydration on the hardening of calcium hydroxide and calcium silicate binders. Tese (PhD), Katholieke Universiteit Leuven, Belgium, (2009).

DOI: 10.1533/9780857093080.589

Google Scholar

[23] AZEREDO, G. A., AZEREDO, A. F. N. e STRUBLE, L. J., Influence of Metakaolin on rheology of cement pastes. In: 3rd Advances in cement-based materials: Characterization, Processing, Modelling and Sensing. (abstract) Anais…, Austin, TX, USA, (2012).

Google Scholar

[24] BARBOSA, F. R.; MOTA,J. M. F. E CARNEIRO A. M. P. A influência do teor de adição metacaulim nas Propriedades no estado endurecido: capilaridade e Resistência mecânica de argamassas inorgânicas para Recuperação de monumentos históricos. In: XI Encontro Nacional de Tecnologia do Ambiente Construído. Anais.. Florianópolis, SC, Agosto de (2006).

DOI: 10.46421/entac.v18i.696

Google Scholar

[25] VELOSA, A. L.; VEIGA, M. do R.; ROCHA, F., Utilização de metacaulim em argamassas em argamassas para conservação de edifícios. In: Simpósio Brasileiro de Tecnologia das Argamassas. Anais.., Curitiba, PR, (2009).

DOI: 10.29327/1149195

Google Scholar

[26] KAKALI, G.; PERRAKI, T.; TSIVILIS, S.; BADOGIANNIS, E., Thermal tretament of kaolin: the effect of mineralogy on the pozzolanic. Applied Clay Science, vol. 20, pp.73-80, (2001).

DOI: 10.1016/s0169-1317(01)00040-0

Google Scholar

[27] OLIVEIRA, M.P. Estudo de um caulim calcinado do estado da Paraíba como material de substituição parcial do cimento Portland. 2004. Dissertação (Mestrado em Engenharia Agrícola), UFCG, Campina Grande, (2004).

DOI: 10.1590/s1415-43662006000200034

Google Scholar

[28] CHAKCHOUCK, A.; TRIFI, L.; SAMET, B. e BOUAZIZ, S., Formulation of blended cement: Effect of process variables on clay pozzolan activity. Construction and Building Materials. Vol. 23, pp.1365-1373, (2009).

DOI: 10.1016/j.conbuildmat.2008.07.015

Google Scholar

[29] TIRONI, A.; TREZZA, M. A.; SCIAN, A. N. e IRASSAR, E. F., Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materiails. Vol. 28, pp.276-281, (2012).

DOI: 10.1016/j.conbuildmat.2011.08.064

Google Scholar

[30] NBR 7175: Cal Hidratada para argamassas - requisitos. Rio de Janeiro, (2003).

Google Scholar

[31] SEPULCRE-AGUILAR, A. and HERNÁNDEZ-OLIVARES, F. Assessment of Phase Formation in Lime-based Mortars with added Metakaolin, Portland Cement and Sepiolite, for Grouting of Historic Mansory, Cement and Concrete Research, Vol. 40, pp.66-76, (2010).

DOI: 10.1016/j.cemconres.2009.08.028

Google Scholar

[32] NBR 13276: - Argamassa para assentamento de paredes e tetos - Determinação do teor de água para obtenção do índice de consistência padrão. Rio de Janeiro (2005).

Google Scholar

[33] NBR 13278: Argamassa para assentamento e revestimento de paredes e tetos – Determinação densidade de massa e teor de ar incorporado. Rio de Janeiro, (2005).

Google Scholar

[34] NBR 15259: Argamassas para assentamento e revestimento de paredes e tetos - Determinação da absorção de água por capilaridade e coeficiente de capilaridade, Rio de Janeiro, (2005).

DOI: 10.5102/pic.n2.2016.5493

Google Scholar

[35] MURAT, M., Hydration reaction and hardening of calcined clays and related minerals: I – preliminary investigation on metakaolinite. Cement and Concrete Research. Vol. 13, pp.259-266, (1983).

DOI: 10.1016/0008-8846(83)90109-6

Google Scholar

[36] AMBROISE, J.; MAXIMILIEN, S. e PERA, J., Properties of metakaolin blended cements. Advanced Cement Based Materials. Vol. 1, pp.161-168, (1994).

DOI: 10.1016/1065-7355(94)90007-8

Google Scholar

[37] LARGO, O., R.; VILLA, R. VIGIL de La; JIMÉ NEZ, R. G.; GÓMEZ, B. N.; FRÍAS, M., Lower temperature activation for kaolinite-based clay waste: Evaluation of hydrated phases during pozzolanic reaction. Journal of the American Ceramic Society, vol. 94, pp.1224-1229, (2011).

DOI: 10.1111/j.1551-2916.2010.04134.x

Google Scholar

[38] TAYLOR, H. F. W. Cement Chemistry, 2nd Edition, Thomas Telford, London, (1997).

Google Scholar

[39] VOINESCU, A. E.; KELLERMEIER, M.; BARTEL, B.; CARNERUP, A. M.; LARSSON, A-K.; TOURAUD, D.; KUNZ, W.; KIENLE, L.; PFITZNER, A. e HYDE, S. T., Inorganic self-organized silica aragonite biormorphic composites. Crystal Growth & Design. Vol. 8, pp.1515-1521, (2008).

DOI: 10.1021/cg700692t

Google Scholar

[40] CIZER, O.; VAN BALEN, K. e VAN GEMERT, D., Carbonation reaction of hydrate and hydraulic binder at 200C. In: 1st Internatinal Conference on Accelarated Carbonation for Environmental and Materials Engineering. Proccedings… London, (2006).

DOI: 10.4028/www.scientific.net/amr.133-134.241

Google Scholar

[41] JING, W. M., KANG, S. H.; KIM, W. S. e CHOI, C. K., Particle morphology of calcium carbonate precipated by gás-liquid reaction in a Couette-Taylor reactor. Chemical Engineering Science. Vol. 55, pp.733-747, (2000).

DOI: 10.1016/s0009-2509(99)00395-4

Google Scholar