[1]
Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research 35 1233– 1246 (2005).
DOI: 10.1016/j.cemconres.2004.09.002
Google Scholar
[2]
Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer technology: the current state of the art. Journal Material Science, 42: 2917–2933 (2007).
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[3]
Latella B.A., Perera, D.S., Escott, T.R., Cassidy, D.J. Adhesion of glass to steel using a geopolymer. J. Mater Sci 41 1261–1264 (2006).
DOI: 10.1007/s10853-005-4234-3
Google Scholar
[4]
Palomo, A.; De La Fuente, J.I.L. Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron. Cement and Concrete Research 33(2): 281-288. (2003).
DOI: 10.1016/s0008-8846(02)00963-8
Google Scholar
[5]
Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research 29 (1999) 1323–1329.
DOI: 10.1016/s0008-8846(98)00243-9
Google Scholar
[6]
Palomo, A.; Varela, M.T.B.; Granizo, M.T.; Puertas, F.; Varquez, T.; Grutzeck, M.W. Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research 29 (1999) 997–1004.
DOI: 10.1016/s0008-8846(99)00074-5
Google Scholar
[7]
Silva F.J., Thaumaturgo C. Fibre reinforcement and fracture response in geopolymeric mortars, Fatigue Fract. Eng. Mater. Struct., 2003, 26, 167-172.
DOI: 10.1046/j.1460-2695.2003.00625.x
Google Scholar
[8]
Davidovits, J. Synthesis of new high-temperature geopolymers for reinforced plastics/composites. Annual Pacific Technology Conference Thecnical Displays, 4: 151-154 (1979).
Google Scholar
[9]
Davidovits J., Geopolymers: Inorganic polymeric new materials, Journal of Thermal Analysis, 1991, 37, 1633.
DOI: 10.1007/bf01912193
Google Scholar
[10]
Gomes, K. C., Lima G.S.T., Torres S.M., De Barros S., Vasconcelos I.F., Barbosa N.P., Iron distribution in geopolymer with ferromagnetic rich precursor, Materials Science Forum, 2010, 643, 131-138.
DOI: 10.4028/www.scientific.net/msf.643.131
Google Scholar
[11]
Gomes, K.C.; Rocha, B.D.; Ferreira, D.T. A; Lira, E.C.; Torres, S.M.; De Barros, S; Barbosa, N.B. Activation Alkaline Waste Kaolin for Fabrication of Building Blocks. Key Engineering Materials Vol. 517 (2012) 622-627.
DOI: 10.4028/www.scientific.net/kem.517.622
Google Scholar
[12]
Ferreira, D.T.A.; Rocha, B.D.; Lira, E.C.; Gomes, K.C.; Torres, S.M.; Barbosa, N.B. Characterization Physics, Chemistry and Mineralogy of Waste from Kaolin and Their Potential Pozzolanic to Alkali Activation. Key Engineering Materials Vol. 517 (2012).
DOI: 10.4028/www.scientific.net/kem.517.617
Google Scholar
[13]
Associação Brasileira de Normas Técnicas. NBR 7215 - Cimento Portland - Determinação da resistência à compressão. Rio de Janeiro, (1994).
Google Scholar
[14]
A. Polettini, R. Pomi, G. Carcani. The effect of Na and Ca salts on MSWI bottom ash activation for reuse as a pozzolanic admixture. Resources Conservation & Recycling Vol. 43 Issue 4 (2005) 403-418.
DOI: 10.1016/j.resconrec.2004.07.004
Google Scholar
[15]
Drever, J.I. The geochemistry of natural waters. Surface and Ground Water Environments. 3 rd ed. 1997: Prentice Hall Ltd. 420-421.
Google Scholar
[16]
Farmer, V.C. The Infrared spectra of minerals. Ed.: Mineralogical Society, 1974. 539 pg.
Google Scholar
[17]
Gomes, K.C., Lima G.S.T., Torres S.M., De Barros S., Vasconcelos I.F., Barbosa N.P. Iron distribution in geopolymer with ferromagnetic rich precursor, Materials Science Forum, 2010, 643, 131-138.
DOI: 10.4028/www.scientific.net/msf.643.131
Google Scholar