[1]
R. Dermirboga, I. Orung, R. Gul , Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes, Cement and Concrete Research. 31 (2001) 1627-1632.
DOI: 10.1016/s0008-8846(01)00615-9
Google Scholar
[2]
O. Unal, T. Uygunoglu , A. Yildiz, Investigation of properties of low-strength lightweight concrete for thermal insulation, Building and Environment. 42 (2007) 584 – 590.
DOI: 10.1016/j.buildenv.2005.09.024
Google Scholar
[3]
O. Sengul, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir, Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete, Energy and Buildings. 43 (2011) 671 – 676.
DOI: 10.1016/j.enbuild.2010.11.008
Google Scholar
[4]
I. Türkmen, A. Kantarci, Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete, Building and Environment. 42 (2007) 2378 – 2383.
DOI: 10.1016/j.buildenv.2006.06.002
Google Scholar
[5]
S. Chandra, L. Berntsson, Lightweight Aggregate Concrete, Noyes Publications/William Andrew Publishing. (2002) 367.
Google Scholar
[6]
Ozkan, Sengula et al, Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete, Energy and Buildings. 43 (2011) 671–676.
DOI: 10.1016/j.enbuild.2010.11.008
Google Scholar
[7]
I.B. Topçu, B. Isikdag, Manufacture of high heat conductivity resistant clay bricks containing perlite. Building and Environment. 42 (2007) 3540 – 3546.
DOI: 10.1016/j.buildenv.2006.10.016
Google Scholar
[8]
C.L. Page, N.R. Short, P. Purnell, Preliminary investigation into the supercritical carbonation of cement pastes, Journal of Materials Science. 36 (2001) 35 -41.
Google Scholar
[9]
L. Fernandez-Carrasco, J. Rius, C. Miravitlles, Supercritical carbonation of calcium aluminate cement, Cement and Concrete Research. 38 (2008) 1033-1037.
DOI: 10.1016/j.cemconres.2008.02.013
Google Scholar
[10]
N.R. Short, P. Purnell, C.L. Page, Preliminary investigation into the supercritical carbonation of cement pastes, Journal of Materials Science. 36 (2001) 35 -41.
Google Scholar
[11]
L. Black, C. Breen, J. Yarwood, K. Garbev, P. Stemmermann, B. Gasharova, Structural features of C-S-H(I) and its carbonation in air – A Raman spectroscopic study. Part II: carbonated phases, Journal of the American Ceramic Society. 90 (2007).
DOI: 10.1111/j.1551-2916.2006.01429.x
Google Scholar
[12]
C.A. Garcia-Gonzalez, A. Hidalgo, A. Andrade, M.C. Alonso, J. Fraile, A.M. Lopez-Periago, C. Domingo, Modification of Composition and Microstructure of Portland Cement Pastes as a Results of Natural and Supercritical. (2006).
DOI: 10.1021/ie0603363
Google Scholar
[13]
M.R.F. Lima Filho, L. Black, S.M. Torres. Microstructure of Portland Cement Based Composites under Cryogenic Temperatures, 31 Cement and Concrete Science Conference. 1 (2011) 1-5.
Google Scholar
[14]
M.R.F. Lima Filho, L. Black , S.M. Torres, The effect of supercritical carbonation on lightweight concrete for natural gas storage, 32 Cement and Concrete Science Conference. 1 (2012).
Google Scholar
[15]
ASTM C 1202, Standard Test method for electrical indication of concrete's ability to resist chloride ion penetration, in: Annual Book of ASTM Standards, vol. 04. 02, American Society for Testing Materials, Philadelphia (2002).
DOI: 10.1520/jte12075j
Google Scholar
[16]
Md. Safiuddin, N. Hearn, Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete, Cement and Concrete Research. 35 (2005) 1008 -1013.
DOI: 10.1016/j.cemconres.2004.09.017
Google Scholar
[17]
J.G. Cabrera, C.J. Lynsdale, A new gas permeameter for measuring the permeability of mortar and concrete. Magazine of Concrete Research. 40 (1988) 177-182.
DOI: 10.1680/macr.1988.40.144.177
Google Scholar
[18]
A. Dinku, H.W. Reinhardt, Gas permeability coefficient of cover concrete as a performance control, Mater Strucuture. 30 (1997) 387 – 393.
DOI: 10.1007/bf02498560
Google Scholar
[19]
C. Tasdemir , Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete, Cement and Concrete Research. 33 (2003) 1637 – 1642.
DOI: 10.1016/s0008-8846(03)00112-1
Google Scholar
[20]
P. K. Mehta, P. J. M. Monteiro, Concreto: estrutura, propriedades e materiais, Pini, São Paulo, (1994).
Google Scholar
[21]
A. M. Neville, Propriedades do concreto. Trad. Salvador E. Giamusso, Pini, São Paulo, (1997).
Google Scholar