Tensile and Flexural Strength of Untreated Woven Henequen-Glass Fabric Reinforced Epoxy Hybrid Composites

Article Preview

Abstract:

The use of eco-friendly composites has gained attraction due to its lightweight and moderate strength in recent years. The aim of this paper was to study the influence of the stacking sequence of glass and henequen fabrics on the mechanical properties of epoxy composites. Fiber/Matrix interface adhesion was examined using SEM. It was observed how the tensile and flexural properties of the hybrid reinforced epoxy laminates with henequen and glass fabrics, increase as the number of layers of henequen woven fabric decrease while stacking sequence does not have a great effect on the tensile properties. However, when ten layers of henequen fabric were used, a eco-friendly composite material with good mechanical strength was obtained due to the mechanical anchoring of the henequen fabric with the epoxy resin. Hence, it is clearly shown how by tailoring the geometry of the fabric, improvements in the mechanical properties of eco-friendly polymer composites can be achieved.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Maya J.J., Bejoy F., Varughese K.T. and Sabu T., Effect of Chemical modification on properties of hybrid fiber biocomposite, Composites: part A , 39 (2008) 352-363.

Google Scholar

[2] Pasquini D., Morais T E., Silva Curvelo A., Naceur Belgacem M., Dufresne A. Surface esterification of cellulose fibres: Processing and characterization of low-density polyethylene/cellulose fibres composites. Composites Science and Technology 68 (2008).

DOI: 10.1016/j.compscitech.2007.05.009

Google Scholar

[3] Maya J. J., Sabu T. Biofibres and biocomposites. Carbohydrate Polymers 71 (2008) 343–364.

Google Scholar

[4] Ahmed S. K., Vijayarangan S., Naidu A.C. Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites. Materials and Design 28 (2007) 2287–2294.

DOI: 10.1016/j.matdes.2006.08.002

Google Scholar

[5] Bismarck A., Baltazar-Y-Jimenez A., Sarlkakis K. Green composites as Panacea? Socio-economic aspects of green materials. Environment, Development and Sustainability 8 (2006) 445–463.

DOI: 10.1007/s10668-005-8506-5

Google Scholar

[6] Velmurugan R. and Manikandan V., Mechanical properties of palmyra/glass fiber hybrid composites, Composites: part A 38 (2007) 2216-2226.

DOI: 10.1016/j.compositesa.2007.06.006

Google Scholar

[7] Mizanur Rahman M. UV-cured henequen fibers as polymeric matrix reinforcement: Studies of physico-mechanical and degradable properties. Materials and Design 30 (2009) 2191–2197.

DOI: 10.1016/j.matdes.2008.08.022

Google Scholar

[8] Pothan L. A. Thomas S. Polarity parameters and dynamic mechanical behaviour of chemically modified banana fibre polyester composites. Compos Sci Technol 63 (2003); 1231–40.

DOI: 10.1016/s0266-3538(03)00092-7

Google Scholar

[9] Sreekala M. S., Sabu T., Neelakantan N. R. Utilization of short oil palm empty fruit bunch as reinforcement in phenol formaldehyde resin. J Polym Eng 16 (1997) 265–93.

DOI: 10.1515/polyeng.1996.16.4.265

Google Scholar

[10] Herrera-Franco PJ, Valadez-Gonzalez A. Mechanical properties of continuous natural fiber-reinforced polymer composites. Composites Part A 35 (2004) 339–45.

DOI: 10.1016/j.compositesa.2003.09.012

Google Scholar

[11] Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites: Part B 30 (1999) 309–320.

DOI: 10.1016/s1359-8368(98)00054-7

Google Scholar

[12] Aziz Sharifah H, Ansel Martin P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of Knef and hemp bast fiber composites. Compos Sci Technol 64 (2004)1219–30.

DOI: 10.1016/j.compscitech.2003.10.001

Google Scholar

[13] Liu Q., Hughes M. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites: Part A 39 (2008) 1644–1652.

DOI: 10.1016/j.compositesa.2008.07.008

Google Scholar

[14] Robertson R.E., Chu T. -J., Gerard R.J., Kim J. -H., Park M., Kim H. -G., Peterson R.C. Three-dimensional fiber reinforcement shapes obtainable from flat, bidirectional fabrics without wrinkling or cutting. Part 1. A single four-sided pyramid. Composites: Part A 31 (2000).

DOI: 10.1016/s1359-835x(00)00013-0

Google Scholar

[15] Naik KN. Woven fabric composites. Lancaster, Pennsylvania: Technomic Publishing; (1994).

Google Scholar

[16] Chou TW, Ko FK. Textile structural composites. New York: Elsevier Science Publishing; (1989).

Google Scholar

[17] Hearle JWS, Du GW. Forming rigid fibre assemblies: the interaction of textile technology and composite engineering. J Text Inst. 81 (1990) 360–83.

DOI: 10.1080/00405009008658718

Google Scholar

[18] Naik R.A. Failure analysis of woven and braided fabric reinforced composites. Journal of Composite Materials 1995; 29(17): 2334-63.

DOI: 10.1177/002199839502901706

Google Scholar

[19] S. Sampieri-Bulbarela, A. Manzano-Ramírez, J. L. Reyes-Araiza, M. S. Muñiz Villareal,J. R. Gasca-Tirado, L. M. Apátiga, H. Savastano Junior, and A. Marroquín de Jesús, Influences of a novel henequen fabric structure on the mechanical properties of a polymeric composite. Scientific Research and Essays Vol. 6(25), pp.5324-5330, 30 October, (2011).

Google Scholar

[20] ASTM standards D3039/3039M-00. Standard Test Methods for Tensile Properties of Polymer Matrix Composite Materials.

Google Scholar

[21] ASTM standards D6272. Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending.

DOI: 10.1520/d6272

Google Scholar

[22] Kim JK, Mai YW. High strength, high fracture toughness fibre composites with interface control- a review. Compos SciTechnol 1991; 41: 333–78.

DOI: 10.1016/0266-3538(91)90072-w

Google Scholar