[1]
Maya J.J., Bejoy F., Varughese K.T. and Sabu T., Effect of Chemical modification on properties of hybrid fiber biocomposite, Composites: part A , 39 (2008) 352-363.
Google Scholar
[2]
Pasquini D., Morais T E., Silva Curvelo A., Naceur Belgacem M., Dufresne A. Surface esterification of cellulose fibres: Processing and characterization of low-density polyethylene/cellulose fibres composites. Composites Science and Technology 68 (2008).
DOI: 10.1016/j.compscitech.2007.05.009
Google Scholar
[3]
Maya J. J., Sabu T. Biofibres and biocomposites. Carbohydrate Polymers 71 (2008) 343–364.
Google Scholar
[4]
Ahmed S. K., Vijayarangan S., Naidu A.C. Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites. Materials and Design 28 (2007) 2287–2294.
DOI: 10.1016/j.matdes.2006.08.002
Google Scholar
[5]
Bismarck A., Baltazar-Y-Jimenez A., Sarlkakis K. Green composites as Panacea? Socio-economic aspects of green materials. Environment, Development and Sustainability 8 (2006) 445–463.
DOI: 10.1007/s10668-005-8506-5
Google Scholar
[6]
Velmurugan R. and Manikandan V., Mechanical properties of palmyra/glass fiber hybrid composites, Composites: part A 38 (2007) 2216-2226.
DOI: 10.1016/j.compositesa.2007.06.006
Google Scholar
[7]
Mizanur Rahman M. UV-cured henequen fibers as polymeric matrix reinforcement: Studies of physico-mechanical and degradable properties. Materials and Design 30 (2009) 2191–2197.
DOI: 10.1016/j.matdes.2008.08.022
Google Scholar
[8]
Pothan L. A. Thomas S. Polarity parameters and dynamic mechanical behaviour of chemically modified banana fibre polyester composites. Compos Sci Technol 63 (2003); 1231–40.
DOI: 10.1016/s0266-3538(03)00092-7
Google Scholar
[9]
Sreekala M. S., Sabu T., Neelakantan N. R. Utilization of short oil palm empty fruit bunch as reinforcement in phenol formaldehyde resin. J Polym Eng 16 (1997) 265–93.
DOI: 10.1515/polyeng.1996.16.4.265
Google Scholar
[10]
Herrera-Franco PJ, Valadez-Gonzalez A. Mechanical properties of continuous natural fiber-reinforced polymer composites. Composites Part A 35 (2004) 339–45.
DOI: 10.1016/j.compositesa.2003.09.012
Google Scholar
[11]
Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites: Part B 30 (1999) 309–320.
DOI: 10.1016/s1359-8368(98)00054-7
Google Scholar
[12]
Aziz Sharifah H, Ansel Martin P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of Knef and hemp bast fiber composites. Compos Sci Technol 64 (2004)1219–30.
DOI: 10.1016/j.compscitech.2003.10.001
Google Scholar
[13]
Liu Q., Hughes M. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites: Part A 39 (2008) 1644–1652.
DOI: 10.1016/j.compositesa.2008.07.008
Google Scholar
[14]
Robertson R.E., Chu T. -J., Gerard R.J., Kim J. -H., Park M., Kim H. -G., Peterson R.C. Three-dimensional fiber reinforcement shapes obtainable from flat, bidirectional fabrics without wrinkling or cutting. Part 1. A single four-sided pyramid. Composites: Part A 31 (2000).
DOI: 10.1016/s1359-835x(00)00013-0
Google Scholar
[15]
Naik KN. Woven fabric composites. Lancaster, Pennsylvania: Technomic Publishing; (1994).
Google Scholar
[16]
Chou TW, Ko FK. Textile structural composites. New York: Elsevier Science Publishing; (1989).
Google Scholar
[17]
Hearle JWS, Du GW. Forming rigid fibre assemblies: the interaction of textile technology and composite engineering. J Text Inst. 81 (1990) 360–83.
DOI: 10.1080/00405009008658718
Google Scholar
[18]
Naik R.A. Failure analysis of woven and braided fabric reinforced composites. Journal of Composite Materials 1995; 29(17): 2334-63.
DOI: 10.1177/002199839502901706
Google Scholar
[19]
S. Sampieri-Bulbarela, A. Manzano-Ramírez, J. L. Reyes-Araiza, M. S. Muñiz Villareal,J. R. Gasca-Tirado, L. M. Apátiga, H. Savastano Junior, and A. Marroquín de Jesús, Influences of a novel henequen fabric structure on the mechanical properties of a polymeric composite. Scientific Research and Essays Vol. 6(25), pp.5324-5330, 30 October, (2011).
Google Scholar
[20]
ASTM standards D3039/3039M-00. Standard Test Methods for Tensile Properties of Polymer Matrix Composite Materials.
Google Scholar
[21]
ASTM standards D6272. Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending.
DOI: 10.1520/d6272
Google Scholar
[22]
Kim JK, Mai YW. High strength, high fracture toughness fibre composites with interface control- a review. Compos SciTechnol 1991; 41: 333–78.
DOI: 10.1016/0266-3538(91)90072-w
Google Scholar