An Opportunity for Environmental Conservation: Evaluation of Test Material for Construction of Artificial Reefs Modules Trainers Made of Ecological Concrete

Article Preview

Abstract:

As a result of the degradation of coral reefs around the world and given that conservation efforts alone are not enough, artificial reefs have been proposed as a tool for the conservation of these ecosystems and recovery. As part of an initiative to develop modules forming artificial reefs made of concrete to promote the ecological conservation of the biodiversity of the Colombian Caribbean, this work constitutes a starting point. During eight months two trapezoidal plates were submerged in the waters surrounding the Bajo Grande (Isla Palma) archipelago de San Bernardo in the Colombian Caribbean; the plates were fabricated in concrete with Portland cement and waste ceramic. Seeking a more ecological product, aggregates were replaced entirely by ceramic waste. After making biological and physicochemical evaluations of the material exposed to the marine environment it was concluded that this is a favorable substrate for the development of coral reefs; and the plates were colonized on more than 30% of its surface by marine organisms, their structure was found internally stable and there were no adverse effects on marine biota near the test site.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

606-614

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lapointe, B.E. 1989. Caribbean coral reefs: Are they becoming algal reefs? Sea Frontiers: 83-91.

Google Scholar

[2] Hughes, T.P. 1994. Catastrophes, phase shifts, and largescale degradation of a Caribbean coral reef. Science 265: 1547-1551.

DOI: 10.1126/science.265.5178.1547

Google Scholar

[3] Gallo, F. Martínez, A. Ríos, J. 2002. Nuevo enfoque para la gestión ambiental del anclaje deembarcaciones en áreas coralinas. Scientia et Technica. No. 20. Octubre.

Google Scholar

[4] Brown, B.E. 1997. Coral bleaching: causes and consequences. Coral Reefs 16 (Suppl): S129-S138.

DOI: 10.1007/s003380050249

Google Scholar

[5] Carpenter, R.C. 1990. Mass mortality of Diadema antillarum. II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104: 79-86.

DOI: 10.1007/bf01313160

Google Scholar

[6] Epstein,N. R.P.M. Bak y B. Rinkevich. 2002. Applying forest restoration principles to coral reef rehabilitation. Aquatic conservation: Marine and Freshwater Ecosystems, 13: 387-395.

DOI: 10.1002/aqc.558

Google Scholar

[7] Jianzhuang Xiao, Wengui Li, Yuhui Fan a, Xiao Huang. Review An overview of study on recycled aggregate concrete in China (1996–2011). Construction and Building Materials 31 (2012) 364–383.

DOI: 10.1016/j.conbuildmat.2011.12.074

Google Scholar

[8] Jian Yang, Qiang Du, YiwangBao. Concrete with recycled concrete aggregate and crushed clay bricks. Construction and Building Materials 25 (2011) 1935–(1945).

DOI: 10.1016/j.conbuildmat.2010.11.063

Google Scholar

[9] L. Evangelista, J. de Brito. Durability performance of concrete made with fine recycled concrete aggregates. Cement& Concrete Composites 32 (2010) 9–14.

DOI: 10.1016/j.cemconcomp.2009.09.005

Google Scholar

[10] Valeria Corinaldesi, GiacomoMoriconi. Influence of mineral additions on the performance of 100% recycled aggregate concrete. Construction and Building Materials 23 (2009) 2869–2876.

DOI: 10.1016/j.conbuildmat.2009.02.004

Google Scholar

[11] Ramírez, A., O. Sánchez, L. Borrero& L. Sánchez. 1994. Introducción a la biología pesquera del Golfo de Morrosquillo y su relación con los ecosistemas naturales. Empresa Colombiana de Petróleos, ECOPETROL, Distrito Caño Limón-Coveñas. Colombia.

Google Scholar

[12] Vernett, G. 1985. La plate-forme continentalecaraïbe de Colombie. Importance du diapirismeargileux sur la morphologie et la sédimentation. Thése de Doctorat d´ Etat, Université Bordeaux-1, 387 p.

Google Scholar

[13] Corredor, F & Amaya, F. 1993. Ecología Marina del Golfo de Morrosquillo. Centro Editorial, Universidad Nacional de Colombia, Bogotá. 201 p.

Google Scholar

[14] SEA. 2000. Monitoreo de biología pesquera en el Golfo de Morrosquillo. Empresa Colombiana de Petróleos, ECOPETROL. Distrito Caño Limón-Coveñas, Sucre, Colombia.

Google Scholar

[15] Espinal, L. 1963. Formaciones vegetales de Colombia, IGAC, Bogotá.

Google Scholar

[16] Díaz, J.M. 2000. Áreas coralinas de Colombia. Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andreis,. INVEMAR. Santa Marta, Colombia.

DOI: 10.23854/07199562.2021571esp.ricaurte-villota129

Google Scholar

[17] Flórez C. & A. Etter. 2003 Caracterización ecológica de las Islas Múcura y Tintipán, Archipiélago de San Bernardo, Colombia. Rev. Acad. Colomb. Cienc. 27(104): 343-356.

Google Scholar

[18] López-Victoria, M. y J.M. Díaz. 2000. Morfología y estructura de las formaciones coralinas del Archipiélago de San Bernardo, Caribe Colombiano. Rev. Acad. Col. Cienc. Exact. Fís. Nat., 24 (91): 219-230.

DOI: 10.25268/bimc.invemar.2000.29.0.312

Google Scholar

[19] RILEM CPC-18: Determinación de la profundidad de carbonatación en concreto.

Google Scholar

[20] NTC 220: Resistencia a la compresión de morteros de cemento.

Google Scholar

[21] Jianzhuang Xiao, Jiabin Li, Ch. Zhang. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research 35 (2005) 1187– 1194.

DOI: 10.1016/j.cemconres.2004.09.020

Google Scholar

[22] John Burt, Aaron Bartholomew, Andrew Bauman, Abdulla Saif, Peter F. Sale. Coral recruitment and early benthic community development on several materialsused in the construction of artificial reefs and breakwaters. Journal of Experimental Marine Biology and Ecology 373 (2009).

DOI: 10.1016/j.jembe.2009.03.009

Google Scholar