Homogeneous Microstructure of ZrO2-BN Composites with In Situ Synthesized BN

Article Preview

Abstract:

A new process was used to improve microstructure homogeneity of ZrO2-BN composites. Boric acid was deposited on the surface of ZrO2 particles by heterogeneous precipitation method from aqueous solution of boron oxide under the action of heat by evaporation. In order to improve the microstructure homogeneity, the mixture powder was stirred over-vigorously until transforming into the highly viscosity slurry. Subsequently, the obtained mixture powders were dried, nitrided at 900 °C in ammonia and crystallized at 1500 °C in nitrogen atmosphere to obtain in-situ synthesized BN coated on the surface of ZrO2 composite particles. Finally, ZrO2-BN composites incorporated with 30 vol. % BN were prepared by hot-pressing. The SEM microstructure and fracture surface of ZrO2-BN composites revealed that in-situ synthesis BN particles were dispersed in the ZrO2 matrix homogeneously.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

353-357

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.T. Paine, C.K. Narula, Chem. Rev. 90 (1990) 73-91.

Google Scholar

[2] J. Eichler, C. Lesniak, J. Eur. Ceram. Soc. 28 (2008) 1105-1109.

Google Scholar

[3] Y.L. Li, J.X. Zhang, G.J. Qiao, Z.H. Jin, Mater. Sci. Eng., A 397 (2005) 35-40.

Google Scholar

[4] T. Kusunose, J. Ceram. Soc. Jpn. 114 (2006) 167-173.

Google Scholar

[5] T. Kusunose, T. Sekino, Y. Ando, K. Niihara, J. Mater. Res. 23 (2008) 236-244.

Google Scholar

[6] T. Kusunose, Y. -H. Kim, T. Sekino, et al., J. Mater. Res. 20 (2005) 183-190.

Google Scholar

[7] W.S. Coblenz, D. Lewis, J. Am. Ceram. Soc. 71 (1988) 1080-1085.

Google Scholar

[8] G.J. Zhang, J.F. Yang, M. Ando, T. Ohji, S. Kanzaki, Acta Mater. 52 (2004) 1823-1835.

Google Scholar

[9] S. Alkoy, C. Toy, T. Gonul, A. Tekin, J. Eur. Ceram. Soc. 17 (1997) 1415-1422.

Google Scholar

[10] A. Lipp, K.A. Schwetz, K. Hunold, J. Eur. Ceram. Soc. 5 (1989) 3-9.

Google Scholar

[11] J. Thomas, N.E. Weston, T.E. O'Connor, J. Am. Chem. Soc. 84 (1963) 4619-4622.

Google Scholar

[12] X. Chen, C. Burda, J. Phys. Chem. B 108 (2004) 15446-15449.

Google Scholar

[13] J. Li, L. Gao, J. Mater. Chem. 13 (2003) 628-630.

Google Scholar

[14] S. Sahu, S. t. Kavecký, L. u. Illésova, et al., J. Eur. Ceram. Soc. 18 (1998) 1037-1043.

Google Scholar

[15] I. Ardelean, S. Cora, R. Ciceo Lucacel, O. Hulpus, Solid State Sci. 7 (2005) 1438-1442.

DOI: 10.1016/j.solidstatesciences.2005.08.017

Google Scholar

[16] S. I. Hirano, T. Yogo, S. Asada, S. Naka, J. Am. Ceram. Soc. 72 (1989) 66-70.

Google Scholar

[17] T. Kusunose, T. Sekino, Y.H. Choa, K. Niihara, J. Am. Ceram. Soc. 85 (2002) 2678-2688.

Google Scholar

[18] J. Duan, R. Xue, Y. Xu, C. Sun, J. Am. Ceram. Soc. 91 (2008) 2419-2421.

Google Scholar