Processing and Properties of ZrB2-Cu Composites Sintered by Hot-Pressing Sintering

Article Preview

Abstract:

ZrB2-Cu composite is a new electrical contact materials in the integration of high conductivity, high wear resistance and good mechanical strength. In this paper, ZrB2-Cu composites were prepared by hot-pressing sintering at 800~900 °C under a pressure of 20 MPa.The densification of ZrB2-Cu composites was improved by the addition of nickel using an electroless metal plating technique. X-ray diffraction and scan electron microscopy were used to analyze the phase and microstructure of ZrB2-Cu composites. The results showed that ZrB2-Cu composites with 60 vol % Cu which was sintered at 900 °C had a higher relative density, highest flexural strength of 381 MPa and higher hardness of 2.16 GPa(HV). ZrB2-Cu composites with 50 vol % Cu which was sintered at 900 °C had higher flexural strength of 297 MPa and the highest hardness of 2.66 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

447-450

Citation:

Online since:

March 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Ho, S.T. Newman, Int. J. Mach. Tools Manuf. 43 (2003) 1287-1300.

Google Scholar

[2] N.F. Petrofes, A.M. Gadalla, J. Mater. Process. Technol. 149 (2004) 272-277.

Google Scholar

[3] N.M. Abbas, D.G. Solomon, M.F. Bahari, Int. J. Mach. Tools Manuf. 47 (2007) 1214-1328.

Google Scholar

[4] L. Zhang, L.H. Dong, D.S. Wang, Mater. Sci. For. Vols. 697-698 (2012) 495-499.

Google Scholar

[5] S. Singh, S. Maheshwari, P.C. Pandey, J. Mater. Process. Technol. 149 (2004) 272-277.

Google Scholar

[6] H.C. Tsai, B.H. Yan, F.Y. Huang, Int. J. Mach. Tools Manuf. 43 (2003) 245-252.

Google Scholar

[7] L. Li, Y.S. Wong, J.Y.H. Fuh, Mater. Des. 22 (2001) 669-678.

Google Scholar

[8] L. Li,Y. Wong, J.Y.H. Fuh, J. Mater. Process. Technol. 113 (2001) 563-567.

Google Scholar

[9] H.M. Zaw, Y.H. Fuh, A.Y.C. Nee, J. Mater. Process. Technol. 89-90 (1999) 182-186.

Google Scholar

[10] S. Norasetthekul, P.T. Eubank, W.L. Bradley, J. Mater. Sci. 34 (1999) 1261-1270.

Google Scholar

[11] A.K. Khanra, L.C. Pathak, M.M. Godkhindi, Mater. Sci. 32 (2009) 401-405.

Google Scholar

[12] A.K. Khanra, R. Sarkar, B. Bhattacharya, J. Mater. Process. Technol. 183 (2002) 122-126.

Google Scholar

[13] A. Passerone, M.L. Muolo, R. Novakovic, J. Eur. Ceram. Soc. 27 (2007) 3277-3285.

Google Scholar

[14] M.L. Muolo, E. Ferrera, A. Passerone, J. Mater. Sci. 40 (2005) 2295-2300.

Google Scholar

[15] M.L. Muolo, E. Ferrera, R. Novakovic, Scripta Mater. 48 (2003) 191-196.

Google Scholar