Formation Mechanism and its Pozzolanic Activity of Metakaolin

Article Preview

Abstract:

In this paper, the process of the transformation from kaolin to metakaolin was investigated. The kaolin was calcined at different temperatures and analyzed by Xray diffraction (XRD), Fourier transform infrared spectra (FTIR) and solid state nuclear magnetic resonance (NMR). The formation of metakaolin structure was based on the stacking polyhedrons changes, which originated from dehydroxylation of kaolinite. With increasing temperature, kaolin kept structure of kaolinite unchanged in the course of dehydroxylation and then structure of kaolinite transformed to metakaolin when the dehydroxylation was over. It was demonstrated that the essence of pozzolanic activity of metakaolin. The result revealed that the pozzolanic activity of metakaolin increased with increasing temperature at the range of 600~900 °C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

620-623

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Gueneyisi, M. Gesoglu, K. Mermerdas, IMater. Struct. 41 (2008) 937–949.

Google Scholar

[2] J. J. Brooks and M. A. M. Johari, Cement Concrete Comp. 23 (2001) 495–502.

Google Scholar

[3] H. Rahier, B. Wullaert, B. Van Mele, J. Therm. Anal. Calorim. 62 (2000) 417–427.

Google Scholar

[4] C. I. Fialips, S. Petit, A. Decarreau, Clay Miner. 35 (2000) 559–572.

DOI: 10.1180/000985500547025

Google Scholar

[5] G. Kakali, T. Perraki, S. Tsivillis, E. Badogiannis, Appl. Clay Sci. 20 (2001) 73–80.

Google Scholar

[6] R. A. Sayanam, A. K. Kalsotra, S. K. Mehta, et al., J. Therm. Anal. Calorim. 35 (1989) 99–106.

Google Scholar

[7] C. Bich, J. Ambroise, J. Pera, Appl. Clay Sci. 44 (2009) 194–200.

Google Scholar

[8] G. W. Brindley, C. C. Kao, J. L. Harrisson, et al. Clay. Clay Mine. 34 (1986) 239–249.

Google Scholar

[9] I. Lecomte, M. Liegeois, A. Rulmont, et al. J. Mater. Res. 18 (2003) 2571–2579.

Google Scholar

[10] A. Shvarzman, K. Kovler, G. S. Grader, Cement Concrete Res. 33 (2003) 405–416.

DOI: 10.1016/s0008-8846(02)00975-4

Google Scholar

[11] J. G. S. van Jaarsveld, J. S. J. van Deventer, A. Schwartzman, Miner. Eng. 12 (1999) 75–91.

Google Scholar

[12] E. Lippmaa, A. Samoson, M. Magi, J. Am. Chem. Soc. 108 (1986) 1730–1735.

Google Scholar

[13] J. Davidovits, J. Therm. Anal. Calorim. 37 (1991) 1633–1656.

Google Scholar

[14] J. Klinowski, Chem. Rev. 91 (1991) 1459–1479.

Google Scholar

[15] C. A. Fyfe, Y. Feng, H. Grondey, et al., Chem. Rev. 91 (1991) 1525–1543.

Google Scholar

[16] G. Engelhardt, D. Michel, High resolution solid–state NMR of silicates and zeolites, Wiley, New York (1987).

Google Scholar