The Preparation of TiO2 Nanotube by ZnO Nanorod Template Method and Application in Dye-Sensitized Solar Cells

Article Preview

Abstract:

Titanium dioxide (TiO2) nanotubes film was deposited on conducting glass oxide (FTO) by using ZnO nanorods as template, and the TiO2 nanotubes film was applied in DSCs. First, ZnO nanorods were fabricated on ZnO-doped TiO2 seed layer coated substrates by the hydrothermal method. Second, the obtained ZnO nanorods were used as a template to synthesize ZnOTiO2 coreshell structure through the immersion method. Third, the ZnO nanorods template was removed by etching method to obtained TiO2 nanotubes film. The thickness of ZnO-doped TiO2 seed layer is about 200nm and the crystalline size of nanoparticles are about 5~10nm. The length of the ZnO nanorods are about 1~3μm. The TiO2 nanotube was composed of TiO2 nanoparticles. The short-circuit current density (Jsc), open-circuit voltage, fill factor (FF) and efficiency of TiO2 nanotubes DSC were 4.63 mA·cm-2, 0.74V, 62% and 2.15%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

888-892

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan, M. Gratzel, Nature. 353 (6346) (1991) 737-740.

Google Scholar

[2] M. Gratzel, Inorg. Chem. 44 (2005) 6841-6851.

Google Scholar

[3] A. Yella, H. Lee, H.N. Tsao, Science. 334 (6056) (2011) 629-634.

Google Scholar

[4] Q.F. Zhang, G.Z. Cao, Nano. Today. 6 (2011) 91-109.

Google Scholar

[5] X.D. Gao, X.M. Li, Y.Q. Wu, J. Mater. Chem. 22 (2012) 18930-18938.

Google Scholar

[6] D. Kuang, J. Brillet, P. Chen, M. Takata, ACS Nano. 2 (6) ( 2008) 1113-1116.

Google Scholar

[7] Q.W. Jiang, G.R. Li, X. Gao, Chem. Commun. 28 (44) (2009) 6720-6722.

Google Scholar

[8] G.K. Mor, K. Shankar, M. Paulose , O.K. Varghese, Nano. Lett. 6 (2) ( 2006) 215-218.

Google Scholar

[9] M. Law, L. E. Greene, J. C. Johnson, Nat. Mater. 4 (2005) 455-459.

Google Scholar

[10] L. Loh, S. Dunn, J. Nanosci. Nanotech. 12 (11) (2012) 8215-8230.

Google Scholar

[11] A.B. Martinson, J.W. Elam, J.T. Hupp, Nano. Lett. 7 (8) ( 2007) 2183-2187.

Google Scholar

[12] H. Lin, X. Wang, F. Hao, Chimia (Aarau). 67 (3) ( 2013) 136-141.

Google Scholar

[13] Y.T. Shi, C. Zhu, L. Wang, C.Y. Zhao, Chem. Mater. 25(2013) 1000-1012.

Google Scholar

[14] D. Wang, Y. Chen, L. Jiang, ACS Nano. 4(2010) 887-895.

Google Scholar

[15] Y. Suzuki, S. Yoshikawa, J. Mater. Res. 19(4)(2004) 982-985.

Google Scholar

[16] W. Wang, O.K. Vargheseo, M. panlose, J. Mater. Res. 19 (2) (2004) 417-422.

Google Scholar

[17] T. Rattanavoravipa, T. Sagawa, S. Yoshikawa, Sol. Energy Mater. Sol. Cells. 92 (2008) 1445-1449.

Google Scholar

[18] X.L. Xiao, L.X. Yang, M.L. Guo, Sci. China, Ser. B. 52 (2009) 2161-2165.

Google Scholar

[19] Y.J. Ji, K.C. Lin, H.G. Zheng, Electrochem. Commun. 13 (2011) 1013-1015.

Google Scholar

[20] J.H. Lee, I.C. Leu, M.C. Hsu, et al., J. Phys. Chem. B 109 (2005) 13056-13059.

Google Scholar

[21] J.J. Qiu, Z.G. Jin, Z.F. Liu, Thin Solid Films. 515 (2007) 2897–2902.

Google Scholar

[22] J.J. Qiu, F.W. Zhuge, K. Lou, X.M. Li, J. Mater. Chem. 21 (2011) 5062-5068.

Google Scholar

[23] J. J Qiu, F.W. Zhuge, X.X. Li, X.D. Gao, J. Mater. Chem. 22 (2012) 3549-2554.

Google Scholar