Thermoelectric Properties of Ni Doped P-Type BiCuSeO Oxyselenides

Article Preview

Abstract:

We report on the effect of Ni doping on the thermoelectric properties of p-type BiCuSeO oxyselenide, with layer structure composed of conductive (Cu2Se2)2- layers alternately stacked with insulating (Bi2O2)2+ layers along c axis. After doping with Ni, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ~231 μwm-1K-2 at 873 K. Coupled to low thermal conductivity, ZT at 873 K is increased from 0.35 for pristine BiCuSeO to 0.39 for Bi0.95Ni0.05CuSeO. However, the efficiency of Ni doping in the insulating (Bi2O2)2+ layer is low, and this doping only leads to a limited increase of the hole carriers concentration. Therefore Ni doped BiCuSeO has relatively low electrical conductivity which makes its thermoelectric figure of merit much lower than that of Ca, Sr, Ba and Pb doped BiCuSeO.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

906-909

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, ed. D. M. Rowe, CRC Press, Boca Raton, FL, 2006, ch. 1.

Google Scholar

[2] B. Poudel, Q. Hao, Y. Ma, et al., Science 320 (2008) 634-638.

Google Scholar

[3] K. Biswas, J. He, I.D. Blum, et al., Nature 489 (2012) 414-418.

Google Scholar

[4] A.D. LaLonde, Y. Pei and G. Jeffrey Snyder, Energy Environ. Sci. 4 (2011) 2090-(2096).

Google Scholar

[5] L. D. Zhao, H. J. Wu, S. Q. Hao, et al., Energy En viron. Sci. 6 (2013) 3346-3355.

Google Scholar

[6] M. Ito and D. Furumoto, Journal of Alloys and Compounds 450 (2008) 517–520.

Google Scholar

[7] N.V. Nong, N. Pryds, S. Linderoth and M. Ohtaki, Adv. Mater. 23 (2011) 2484–2490.

Google Scholar

[8] M. Ohtaki, K. Araki and K. Yamamoto, Journal of Electeronic Materials 38.

Google Scholar

[7] (2009) 1234-1238.

Google Scholar

[9] Y. Liu, Y.H. Lin, J.L. Lan, et al., J. Am. Ceram. Soc. 93(10) (2010) 2938–2941.

Google Scholar

[10] J. Liu, C. L. Wang, W. B. Su, et al., Appl. Phys. Lett. 95 (2009) 162110(1–3).

Google Scholar

[11] D. Flahaut, T. Mihara, R. Funahashi, et al., J. Appl. Phys. 100 (2006) 084911(1–4).

Google Scholar

[12] Y. Liu, L.D. Zhao, Y.C. Liu, et al., J. Am. Chem. Soc. 133 (2011) 20112–20115.

Google Scholar

[13] Y.L. Pei, J. He, J.F. Li, et al., NPG Asia Materials (2013) 5, e47; doi: 10. 1038/am. 2013. 15.

Google Scholar

[14] F. Li, T.R. Wei, F. Kang and J.F. Li, J. Mater. Chem. A 1 (2013) 11942-11949.

Google Scholar

[15] L. D. Zhao, D. Berardan, Y. L. Pei, et al., Appl. Phys. Lett. 97 (2010) 092118(1-3).

Google Scholar

[16] J. Li, J. Sui, Y. Pei, et al., Energy Environ. Sci. 5 (2012) 8543-8547.

Google Scholar

[17] J.L. Lan, Y.C. Liu, B. Zhan, et al. , Adv. Mater. 25 (2013) 5086–5090.

Google Scholar

[18] Y.C. Liu, J.L. Lan, B. Zhan, et al., J. Am. Ceram . Soc. 96(9) (2013) 2710–2713.

Google Scholar

[19] Y. Liu, J. Lan, W. Xu, et al. Chem. Commun. (2013) DOI: 10. 1039/C3CC44578J.

Google Scholar

[20] J.L. Lan, B. Zhan, Y.C. Liu, et al., Appl. Phys. Lett. 102 (2013) 123905(1-4).

Google Scholar

[21] J. Li, J. Sui, C. Barreteau, et al., Journal of Alloys and Compounds 551 (2013) 649–653.

Google Scholar

[22] F. Li, J.F. Li, L.D. Zhao, et al. Energy Environ. Sci. 5 (2012) 7188-7195.

Google Scholar