Non-Covalent Functionalization of Graphene and Multiwalled Carbon Nanotubes Composites for Transparent Conductive Films

Article Preview

Abstract:

In this paper, dry ice is converted into few-layer graphene, which can be dispersed stably in N, N-Dimethylformamide (DMF) by adding pyrene-1-boronic as a stabilizer that non-covalently functionalizes the surface of graphene to obtain homogeneous colloidal suspensions. Moreover, we make use of vacuum filtration transferring for fabricating transparent conducting graphene films by incorporating multiwalled carbon nanotubes (MWNTs). The increased conductivity is ascribed to the formation of a more efficient network. Here a transmittance of 81% at 550 nm and a sheet resistance as low as 38.17 KΩ/sq are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

921-925

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Blake, P.D. Brimicombe, R.R. Nair, et al., Graphene-based liquid crystal device, Nano Lett. 8 (2008) 1704-1708.

Google Scholar

[2] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, Acs Nano 2 (2008) 463-470.

DOI: 10.1021/nn700375n

Google Scholar

[3] E. Yoo, J. Kim, E. Hosono, H. -s. Zhou, T. Kudo, I. Honma, Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett. 8 (2008) 2277-2282.

DOI: 10.1021/nl800957b

Google Scholar

[4] D. Wan, C. Yang, T. Lin, Y. Tang, M. Zhou, Y. Zhong, F. Huang, J. Lin, Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications, Acs Nano 6 (2012) 9068-9078.

DOI: 10.1021/nn303228r

Google Scholar

[5] Z. Niu, J. Du, X. Cao, Y. Sun, W. Zhou, H.H. Hng, J. Ma, X. Chen, S. Xie, Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors, Small 8 (2012).

DOI: 10.1002/smll.201200924

Google Scholar

[6] Z. -S. Wu, A. Winter, L. Chen, et al., Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater. 24 (2012) 5130-5135.

DOI: 10.1002/adma.201201948

Google Scholar

[7] Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors, Nano Lett. 9 (2009) 2973-2977.

DOI: 10.1021/nl901396g

Google Scholar

[8] M.G. Lemaitre, E.P. Donoghue, M.A. McCarthy, et al., Improved transfer of graphene for gated schottky-junction, vertical, organic, field-effect transistors, Acs Nano 6 (2012) 9095-9102.

DOI: 10.1021/nn303848k

Google Scholar

[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[10] C. Berger, Z. Song, X. Li, et al., Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006) 1191-1196.

Google Scholar

[11] S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on ru(0001), Phys. Rev. B 76 (2007) 075429.

DOI: 10.1103/physrevb.76.075429

Google Scholar

[12] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270-274.

DOI: 10.1038/nnano.2008.83

Google Scholar

[13] A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene, J. Mater. Chem. 21 (2011) 9491-9493.

DOI: 10.1039/c1jm11227a

Google Scholar

[14] A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett. 9 (2009) 4031-4036.

DOI: 10.1021/nl902200b

Google Scholar

[15] M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions, ACS Nano 4 (2010) 3155-3162.

DOI: 10.1021/nn1005304

Google Scholar

[16] A.S. Wajid, S. Das, F. Irin, et al., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon 50 (2012) 526-534.

DOI: 10.1016/j.carbon.2011.09.008

Google Scholar

[17] A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, C. Trapalis, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes, Solid State Communications 149 (2009).

DOI: 10.1016/j.ssc.2009.09.018

Google Scholar

[18] S. Das, F. Irin, H.S. Tanvir Ahmed, et al., Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites, Polymer 53 (2012) 2485-2494.

DOI: 10.1016/j.polymer.2012.03.012

Google Scholar

[19] H. Yabu, M. Shimomura, Miniaturization of surface patterns by combination of contact etching lithography and multi-step shrinking of stretched polymer films, Polym. J 40 (2008) 667-667.

DOI: 10.1038/pj.2008.107

Google Scholar

[20] Z. Chen, A. Lohr, C.R. Saha-Moller, F. Wurthner, Self-assembled pi-stacks of functional dyes in solution: Structural and thermodynamic features, Chem Soc Rev 38 (2009) 564-584.

DOI: 10.1039/b809359h

Google Scholar

[21] D. Cai, M. Song, C. Xu, Highly conductive carbon-nanotube/graphite-oxide hybrid films, Adv. Mater. 20 (2008) 1706-1709.

DOI: 10.1002/adma.200702602

Google Scholar

[22] J.J. Gooding, A. Chou, J. Liu, et al., The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes, Electrochemistry Communications 9 (2007) 1677-1683.

DOI: 10.1016/j.elecom.2007.03.023

Google Scholar

[23] Z. Wu, Z. Chen, X. Du, et al., Transparent, conductive carbon nanotube films, Science 305 (2004) 1273-1276.

Google Scholar