[1]
P. Blake, P.D. Brimicombe, R.R. Nair, et al., Graphene-based liquid crystal device, Nano Lett. 8 (2008) 1704-1708.
Google Scholar
[2]
H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, Acs Nano 2 (2008) 463-470.
DOI: 10.1021/nn700375n
Google Scholar
[3]
E. Yoo, J. Kim, E. Hosono, H. -s. Zhou, T. Kudo, I. Honma, Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett. 8 (2008) 2277-2282.
DOI: 10.1021/nl800957b
Google Scholar
[4]
D. Wan, C. Yang, T. Lin, Y. Tang, M. Zhou, Y. Zhong, F. Huang, J. Lin, Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications, Acs Nano 6 (2012) 9068-9078.
DOI: 10.1021/nn303228r
Google Scholar
[5]
Z. Niu, J. Du, X. Cao, Y. Sun, W. Zhou, H.H. Hng, J. Ma, X. Chen, S. Xie, Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors, Small 8 (2012).
DOI: 10.1002/smll.201200924
Google Scholar
[6]
Z. -S. Wu, A. Winter, L. Chen, et al., Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater. 24 (2012) 5130-5135.
DOI: 10.1002/adma.201201948
Google Scholar
[7]
Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors, Nano Lett. 9 (2009) 2973-2977.
DOI: 10.1021/nl901396g
Google Scholar
[8]
M.G. Lemaitre, E.P. Donoghue, M.A. McCarthy, et al., Improved transfer of graphene for gated schottky-junction, vertical, organic, field-effect transistors, Acs Nano 6 (2012) 9095-9102.
DOI: 10.1021/nn303848k
Google Scholar
[9]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[10]
C. Berger, Z. Song, X. Li, et al., Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006) 1191-1196.
Google Scholar
[11]
S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on ru(0001), Phys. Rev. B 76 (2007) 075429.
DOI: 10.1103/physrevb.76.075429
Google Scholar
[12]
G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270-274.
DOI: 10.1038/nnano.2008.83
Google Scholar
[13]
A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene, J. Mater. Chem. 21 (2011) 9491-9493.
DOI: 10.1039/c1jm11227a
Google Scholar
[14]
A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett. 9 (2009) 4031-4036.
DOI: 10.1021/nl902200b
Google Scholar
[15]
M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions, ACS Nano 4 (2010) 3155-3162.
DOI: 10.1021/nn1005304
Google Scholar
[16]
A.S. Wajid, S. Das, F. Irin, et al., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon 50 (2012) 526-534.
DOI: 10.1016/j.carbon.2011.09.008
Google Scholar
[17]
A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, C. Trapalis, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes, Solid State Communications 149 (2009).
DOI: 10.1016/j.ssc.2009.09.018
Google Scholar
[18]
S. Das, F. Irin, H.S. Tanvir Ahmed, et al., Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites, Polymer 53 (2012) 2485-2494.
DOI: 10.1016/j.polymer.2012.03.012
Google Scholar
[19]
H. Yabu, M. Shimomura, Miniaturization of surface patterns by combination of contact etching lithography and multi-step shrinking of stretched polymer films, Polym. J 40 (2008) 667-667.
DOI: 10.1038/pj.2008.107
Google Scholar
[20]
Z. Chen, A. Lohr, C.R. Saha-Moller, F. Wurthner, Self-assembled pi-stacks of functional dyes in solution: Structural and thermodynamic features, Chem Soc Rev 38 (2009) 564-584.
DOI: 10.1039/b809359h
Google Scholar
[21]
D. Cai, M. Song, C. Xu, Highly conductive carbon-nanotube/graphite-oxide hybrid films, Adv. Mater. 20 (2008) 1706-1709.
DOI: 10.1002/adma.200702602
Google Scholar
[22]
J.J. Gooding, A. Chou, J. Liu, et al., The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes, Electrochemistry Communications 9 (2007) 1677-1683.
DOI: 10.1016/j.elecom.2007.03.023
Google Scholar
[23]
Z. Wu, Z. Chen, X. Du, et al., Transparent, conductive carbon nanotube films, Science 305 (2004) 1273-1276.
Google Scholar