[1]
J. Wang, T. Yang, S. Chen, G. Li, High Energy Storage Density Performance of Ba, Sr-modified Lead Lanthanum Zirconate Titanate Stannate Antiferroelectric Ceramics, Mater. Res. Bull. 48 (2013) 3847-3849.
DOI: 10.1016/j.materresbull.2013.05.083
Google Scholar
[2]
X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films, Appl. Phys. Lett. 102 (2013) 163903.
DOI: 10.1063/1.4802794
Google Scholar
[3]
W.S. Hackenberger, S. Kwon, U.S. Patent US 7, 884, 042 B2. (2011).
Google Scholar
[4]
Q. Zhang, T. Yang, Y. Zhang, J. Wang, X. Yao, Enhanced antiferroelectric stability and electric-field-induced strain properties in rare earth-modified Pb(Zr0. 63Sn0. 26Ti0. 11)O3 ceramics, Appl. Phys. Lett. 102 (2013) 222904.
DOI: 10.1063/1.4809934
Google Scholar
[5]
S.E. Park, M.J. Pan, K. Markowski, S. Yoshikawa, L.E. Cross, Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics, J. Appl. Phys. 82 (1997) 1798-1803.
DOI: 10.1063/1.365982
Google Scholar
[6]
N.G. Pai, B. Xu, L.E. Cross, Compositional dependence of electrical properties in PLZST thin films, Integrated Ferroelectrics 22 (1998) 501-513.
DOI: 10.1080/10584589808208069
Google Scholar
[7]
Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering Temperature Dependence of Energy-Storage Properties in (Ba, Sr)TiO3 Glass-Ceramics, J. Am. Ceram. Soc. 94 (2011) 1805-1810.
DOI: 10.1111/j.1551-2916.2010.04301.x
Google Scholar
[8]
S.E. Park, K. Markowski, S. Yoshikawa, L.E. Cross, Effect on electrical properties of barium and strontium additions in the lead lanthanum zirconate stannate titanate system, J. Am. Ceram. Soc. 80 (1997) 407-412.
DOI: 10.1111/j.1151-2916.1997.tb02845.x
Google Scholar
[9]
X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics, J. Appl. Phys. 102 (2007) 084106.
DOI: 10.1063/1.2799081
Google Scholar
[10]
M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite, (Pb0. 97La0. 02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films, Appl. Phys. Lett. 97 (2010) 142902.
DOI: 10.1063/1.3497193
Google Scholar
[11]
S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties, Ceram. Int. 39 (2012) 5571-5575.
DOI: 10.1016/j.ceramint.2012.12.071
Google Scholar
[12]
Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, S. Chen, G. Li, X. Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb, Ba)(Nb, Zr, Sn, Ti)O3 Ceramics, Ceram. Int. 39 (2013) 5403-5406.
DOI: 10.1016/j.ceramint.2012.12.047
Google Scholar
[13]
Y.X. Li, T.Q. Yang, J.F. Wang, K. Wei, G. Li, Influence of Zr/Sn Ratio Electric Properties of PLZST Ceramic, Key Eng. Mater. 547 (2013) 101-105.
DOI: 10.4028/www.scientific.net/kem.547.101
Google Scholar
[14]
H.R. Jo, C.S. Lynch, Effects of compositional modification in lead lanthanum zirconate stannate titanate ceramics on electric energy storage properties, Proc. of SPIE. 8689 (2013) 868908.
DOI: 10.1117/12.2013783
Google Scholar
[15]
Q. Zheng, T. Yang, K. Wei, J. Wang, X. Yao, Effect of Sn: Ti variations on electric filed induced AFE-FE phase transition in PLZST antiferroelectric ceramics, Ceram. Int. 38 (2012) S9-S12.
DOI: 10.1016/j.ceramint.2011.04.037
Google Scholar
[16]
L. Wang, Q. Li, L. Xue, X. Liang, Effect of Ti4+: Sn4+ ratio on the phase transition and electric properties of PLZST antiferroelectric ceramics, J. Mater. Sci. 42 (2007) 7397-7401.
DOI: 10.1007/s10853-007-1839-8
Google Scholar
[17]
Q. Zhang, T. Yang, Y. Zhang, X. Yao, Phase transition and electric field induced strain properties in Sm modified lead zirconate stannate titanate based antiferroelectric ceramics, J. Appl. Phys. 113 (2013) 244103.
DOI: 10.1063/1.4812375
Google Scholar