Enhancement of Energy Storage Properties in PLZST Cramics with Different Zr/Sn Ratios

Article Preview

Abstract:

The effect of Zr/Sn ratio on the dielectric and energy storage properties of lanthanum modified lead zirconate stannate titanate (PLZST) ceramics with compositions located near the boundary between antiferroelectric and ferroelectric phases was studied. Microstructural observation indicated that all the samples had a uniform morphology with pure perovskite phase and the average grain size reduced obviously with increasing Zr/Sn ratio. As the Zr/Sn ratio increased, the dielectric constant increased and the transition temperature Tm shifted to higher temperature. All the PLZST ceramics exhibited double hysteresis loops. The maximum polarization increased, while the switching field decreased when the Zr/Sn ratio increased. The variations of Zr/Sn ratio had little impact on remanent polarization. As a result, both charged energy density and discharged energy density increased with increasing Zr/Sn ratio. A high energy storage density of 1.75 J/cm3 was achieved in the PLZST ceramics with the Zr/Sn ratio of 82.5/7.5 at 9 kV/mm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

916-920

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wang, T. Yang, S. Chen, G. Li, High Energy Storage Density Performance of Ba, Sr-modified Lead Lanthanum Zirconate Titanate Stannate Antiferroelectric Ceramics, Mater. Res. Bull. 48 (2013) 3847-3849.

DOI: 10.1016/j.materresbull.2013.05.083

Google Scholar

[2] X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films, Appl. Phys. Lett. 102 (2013) 163903.

DOI: 10.1063/1.4802794

Google Scholar

[3] W.S. Hackenberger, S. Kwon, U.S. Patent US 7, 884, 042 B2. (2011).

Google Scholar

[4] Q. Zhang, T. Yang, Y. Zhang, J. Wang, X. Yao, Enhanced antiferroelectric stability and electric-field-induced strain properties in rare earth-modified Pb(Zr0. 63Sn0. 26Ti0. 11)O3 ceramics, Appl. Phys. Lett. 102 (2013) 222904.

DOI: 10.1063/1.4809934

Google Scholar

[5] S.E. Park, M.J. Pan, K. Markowski, S. Yoshikawa, L.E. Cross, Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics, J. Appl. Phys. 82 (1997) 1798-1803.

DOI: 10.1063/1.365982

Google Scholar

[6] N.G. Pai, B. Xu, L.E. Cross, Compositional dependence of electrical properties in PLZST thin films, Integrated Ferroelectrics 22 (1998) 501-513.

DOI: 10.1080/10584589808208069

Google Scholar

[7] Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering Temperature Dependence of Energy-Storage Properties in (Ba, Sr)TiO3 Glass-Ceramics, J. Am. Ceram. Soc. 94 (2011) 1805-1810.

DOI: 10.1111/j.1551-2916.2010.04301.x

Google Scholar

[8] S.E. Park, K. Markowski, S. Yoshikawa, L.E. Cross, Effect on electrical properties of barium and strontium additions in the lead lanthanum zirconate stannate titanate system, J. Am. Ceram. Soc. 80 (1997) 407-412.

DOI: 10.1111/j.1151-2916.1997.tb02845.x

Google Scholar

[9] X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics, J. Appl. Phys. 102 (2007) 084106.

DOI: 10.1063/1.2799081

Google Scholar

[10] M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite, (Pb0. 97La0. 02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films, Appl. Phys. Lett. 97 (2010) 142902.

DOI: 10.1063/1.3497193

Google Scholar

[11] S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties, Ceram. Int. 39 (2012) 5571-5575.

DOI: 10.1016/j.ceramint.2012.12.071

Google Scholar

[12] Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, S. Chen, G. Li, X. Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb, Ba)(Nb, Zr, Sn, Ti)O3 Ceramics, Ceram. Int. 39 (2013) 5403-5406.

DOI: 10.1016/j.ceramint.2012.12.047

Google Scholar

[13] Y.X. Li, T.Q. Yang, J.F. Wang, K. Wei, G. Li, Influence of Zr/Sn Ratio Electric Properties of PLZST Ceramic, Key Eng. Mater. 547 (2013) 101-105.

DOI: 10.4028/www.scientific.net/kem.547.101

Google Scholar

[14] H.R. Jo, C.S. Lynch, Effects of compositional modification in lead lanthanum zirconate stannate titanate ceramics on electric energy storage properties, Proc. of SPIE. 8689 (2013) 868908.

DOI: 10.1117/12.2013783

Google Scholar

[15] Q. Zheng, T. Yang, K. Wei, J. Wang, X. Yao, Effect of Sn: Ti variations on electric filed induced AFE-FE phase transition in PLZST antiferroelectric ceramics, Ceram. Int. 38 (2012) S9-S12.

DOI: 10.1016/j.ceramint.2011.04.037

Google Scholar

[16] L. Wang, Q. Li, L. Xue, X. Liang, Effect of Ti4+: Sn4+ ratio on the phase transition and electric properties of PLZST antiferroelectric ceramics, J. Mater. Sci. 42 (2007) 7397-7401.

DOI: 10.1007/s10853-007-1839-8

Google Scholar

[17] Q. Zhang, T. Yang, Y. Zhang, X. Yao, Phase transition and electric field induced strain properties in Sm modified lead zirconate stannate titanate based antiferroelectric ceramics, J. Appl. Phys. 113 (2013) 244103.

DOI: 10.1063/1.4812375

Google Scholar