The Influence of Sintering Temperature on the Microstructure and Electrical Properties of BiFeO3 Ceramics

Article Preview

Abstract:

This study reports the synthesis of bismuth ferrite ceramics (BiFeO3, BFO) by the sol-gel method and the effect of different sintering temperatures (800 °C, 820 °C, 850 °C, 880 °C, 900 °C) on the crystal structure, morphology, dielectric properties and ferroelectric properties of the bismuth ferrite ceramics. It is observed that the bismuth ferrite phase are formed when the molar ratio of bismuth and ferric is 1.025 : 1, and the bismuth ferrite ceramics have less impurity phase at all the five sintering temperature. The morphology studies revealed that the grain of bismuth ferrite ceramics is spherical and the grain size increases with the increasing of the sintering temperature. When the bismuth ferrite ceramics with excessive bismuth sintered at 820 °C, it exhibits the higher dielectric constant and the lower dielectric loss, the remnant polarization and the coercive field are 0.35 μC/cm2 and 4.03kV/cm, respectively. The observed ferroelectricity in bismuth ferrite ceramics owes to the point defects associated with oxygen vacancy defects as well as the smaller size effect.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

942-946

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature. 442 (2006) 759-765.

DOI: 10.1038/nature05023

Google Scholar

[2] T. J. Park, G. C. Papaefthymiou, A. J. Viescas, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett. 7 (2007) 766-772.

DOI: 10.1021/nl063039w

Google Scholar

[3] D. Mazumdar, V. Shelke, M. Iliev, Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films, Nano Lett. 10 (2010) 2555-2561.

DOI: 10.1021/nl101187a

Google Scholar

[4] M. K. Singh, Y. Yang, C. G. Takoudis, Multiferroic BiFeO3 thin films for multifunctional devices, Nano technol. 10 (2010) 6195-6199.

Google Scholar

[5] I.P. Suzdalev, Multifunctional nanomaterials, Russ. Chem. Rev. 78 (2009) 249-282.

Google Scholar

[6] J. Wang, J. B. Neaton, H. Zheng, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science. 299 (2003) 1719-1722.

Google Scholar

[7] X. Xu, K. Seal, X. Xu, High tunability of the surface-enhanced Raman scattering response with a metal-multiferroic composite, Nano Lett. 11(2011) 1265-1269.

DOI: 10.1021/nl104291g

Google Scholar

[8] H. Jang, J. S. Lee, K. T. Ko, Coupled magnetic cycloids in multiferroic TbMnO3 and Eu3/4Y1/4MnO3, Phys. Rev. Lett. 106(2011) 047203.

Google Scholar

[9] A. F. García-Flores, D. A. Tenne, Y. J. Choi, Temperature-dependent raman scattering of multiferroic Pb(Fe1/2Nb1/2)O3, J. Phys.: Condens. Matter. 23(2011) 015401.

DOI: 10.1088/0953-8984/23/1/015401

Google Scholar

[10] T. Stevenson, T. P. Comyn, A. Daoud-Aladine, Change in periodicity of the incommensurate magnetic order towards commensurate order in bismuth ferrite lead titan ate, J. Magn. Magn. Mater. 322(2010)64-67.

DOI: 10.1016/j.jmmm.2010.07.043

Google Scholar

[11] C. H. Sree Rama Linga Prasad, G. Sreenivasulu, S. Roopas Kiran, Electrical and magneticm properties of nanocrystalline BiFeO3 prepared by high energy ball milling and microwave sintering, Nano technol. 11 (2011) 4097-4102.

DOI: 10.1166/jnn.2011.3852

Google Scholar

[12] K. L. Yadav, J. Nanosci. Aliovalent-ion and magnetic field induced phase transition in multiferroic BiFe(1-x)Ti(x)O3 system, Nano technol. 11 (2011) 2682-2686.

DOI: 10.1166/jnn.2011.2709

Google Scholar

[13] H. Yang, T. Xian, Z. Q. Wei, Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route, J. Sol-Gel Sci. Technol. 58 (2011) 238-243.

DOI: 10.1007/s10971-010-2383-6

Google Scholar

[14] J. Silva, A. Reyes, H. Esparza, BiFeO3: A review on synthesis, doping and crystal structure, Integr. Ferroelectr. 126 (2011) 47-59.

Google Scholar

[15] M. Sakar, S. Balakumar, P. Saravanan, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method, Mater. Res. Bull. 48(2013)2878-2885.

DOI: 10.1016/j.materresbull.2013.04.008

Google Scholar

[16] G. Felicia, C. Mihai, I. Adelina, Preparation and functional characterization of BiFeO3 ceramics: A comparative study of the dielectric properties, Solid State Sci. 23(2013)79-87.

DOI: 10.1016/j.solidstatesciences.2013.06.010

Google Scholar

[17] X. Z. Chen, R. L. Yang, J. P. Zhou, Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method, Solid State Sci. 19(2013)117-121.

DOI: 10.1016/j.solidstatesciences.2013.02.012

Google Scholar

[18] H. Y. Dai, Z. P. Chen, T. Li, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(2013)3125-3132.

DOI: 10.1007/s10948-013-2130-7

Google Scholar

[19] Satya Narayan Tripathy, B. G. Mishra, Mandar M. Shirolkar, Structural, microstructural and magneto-electric properties of single-phase BiFeO3 nanoceramics prepared by auto-combustion method, Mater. Chem. Phys. 141(2013)423-431.

DOI: 10.1016/j.matchemphys.2013.05.040

Google Scholar