[1]
W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature. 442 (2006) 759-765.
DOI: 10.1038/nature05023
Google Scholar
[2]
T. J. Park, G. C. Papaefthymiou, A. J. Viescas, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett. 7 (2007) 766-772.
DOI: 10.1021/nl063039w
Google Scholar
[3]
D. Mazumdar, V. Shelke, M. Iliev, Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films, Nano Lett. 10 (2010) 2555-2561.
DOI: 10.1021/nl101187a
Google Scholar
[4]
M. K. Singh, Y. Yang, C. G. Takoudis, Multiferroic BiFeO3 thin films for multifunctional devices, Nano technol. 10 (2010) 6195-6199.
Google Scholar
[5]
I.P. Suzdalev, Multifunctional nanomaterials, Russ. Chem. Rev. 78 (2009) 249-282.
Google Scholar
[6]
J. Wang, J. B. Neaton, H. Zheng, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science. 299 (2003) 1719-1722.
Google Scholar
[7]
X. Xu, K. Seal, X. Xu, High tunability of the surface-enhanced Raman scattering response with a metal-multiferroic composite, Nano Lett. 11(2011) 1265-1269.
DOI: 10.1021/nl104291g
Google Scholar
[8]
H. Jang, J. S. Lee, K. T. Ko, Coupled magnetic cycloids in multiferroic TbMnO3 and Eu3/4Y1/4MnO3, Phys. Rev. Lett. 106(2011) 047203.
Google Scholar
[9]
A. F. García-Flores, D. A. Tenne, Y. J. Choi, Temperature-dependent raman scattering of multiferroic Pb(Fe1/2Nb1/2)O3, J. Phys.: Condens. Matter. 23(2011) 015401.
DOI: 10.1088/0953-8984/23/1/015401
Google Scholar
[10]
T. Stevenson, T. P. Comyn, A. Daoud-Aladine, Change in periodicity of the incommensurate magnetic order towards commensurate order in bismuth ferrite lead titan ate, J. Magn. Magn. Mater. 322(2010)64-67.
DOI: 10.1016/j.jmmm.2010.07.043
Google Scholar
[11]
C. H. Sree Rama Linga Prasad, G. Sreenivasulu, S. Roopas Kiran, Electrical and magneticm properties of nanocrystalline BiFeO3 prepared by high energy ball milling and microwave sintering, Nano technol. 11 (2011) 4097-4102.
DOI: 10.1166/jnn.2011.3852
Google Scholar
[12]
K. L. Yadav, J. Nanosci. Aliovalent-ion and magnetic field induced phase transition in multiferroic BiFe(1-x)Ti(x)O3 system, Nano technol. 11 (2011) 2682-2686.
DOI: 10.1166/jnn.2011.2709
Google Scholar
[13]
H. Yang, T. Xian, Z. Q. Wei, Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route, J. Sol-Gel Sci. Technol. 58 (2011) 238-243.
DOI: 10.1007/s10971-010-2383-6
Google Scholar
[14]
J. Silva, A. Reyes, H. Esparza, BiFeO3: A review on synthesis, doping and crystal structure, Integr. Ferroelectr. 126 (2011) 47-59.
Google Scholar
[15]
M. Sakar, S. Balakumar, P. Saravanan, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method, Mater. Res. Bull. 48(2013)2878-2885.
DOI: 10.1016/j.materresbull.2013.04.008
Google Scholar
[16]
G. Felicia, C. Mihai, I. Adelina, Preparation and functional characterization of BiFeO3 ceramics: A comparative study of the dielectric properties, Solid State Sci. 23(2013)79-87.
DOI: 10.1016/j.solidstatesciences.2013.06.010
Google Scholar
[17]
X. Z. Chen, R. L. Yang, J. P. Zhou, Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method, Solid State Sci. 19(2013)117-121.
DOI: 10.1016/j.solidstatesciences.2013.02.012
Google Scholar
[18]
H. Y. Dai, Z. P. Chen, T. Li, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(2013)3125-3132.
DOI: 10.1007/s10948-013-2130-7
Google Scholar
[19]
Satya Narayan Tripathy, B. G. Mishra, Mandar M. Shirolkar, Structural, microstructural and magneto-electric properties of single-phase BiFeO3 nanoceramics prepared by auto-combustion method, Mater. Chem. Phys. 141(2013)423-431.
DOI: 10.1016/j.matchemphys.2013.05.040
Google Scholar