[1]
L. Shun, Y.H. Lin, B.P. Zhang, C.W. Nan, BiFeO3 particles: morphology control by KNO3-assisted hydrothermal synthesis and visible-light photocatalytic activities, Chin. J. Inorg. Chem. 62 (2010) 495-499.
Google Scholar
[2]
Z. Wang, W.F. Xu, H. Peng, X.D. Tang, Polyanion modulated evolution of perovskite BiFeO3 microspheres to microcubes by a microwave assisted hydrothermal method, Mater. Res. Soc. 28 (2013) 1498-1504.
DOI: 10.1557/jmr.2013.130
Google Scholar
[3]
Y.G. Wang, G. Xu, Z.H. Ten, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, Mineralizer-Assisted hydrothermal synthesis and characterization of BiGeO3 nanoparticles, J. Am. Ceram. Soc. 90 (2007) 2615-2617.
DOI: 10.1111/j.1551-2916.2007.01735.x
Google Scholar
[4]
J. Prado-Gonja, D. Avila, M.E. Villafuerte-Castrejon, F. Gonzalez-Garcia, L. Fuentes, R.W. Gomez, J.L. Perez-Mazariego, V. Marquina, E. Moran, Structural, microstructural and mössbauer study of BiFeO3 synthesized at low temperature by a microwave-hydrothermal method, Solid State Sci. 13 (2011).
DOI: 10.1016/j.solidstatesciences.2011.09.006
Google Scholar
[5]
X.D. Qi, J.H. Dho, M. Blamire, Q.X. Jia, J.S. Lee, S. Foltyn, J. L. MacManus-Driscoll, Epitaxial growth of BiFeO3 thin films by LPE and sol-gel methods, J. Magn. Magn. Mater. 283 (2004) 415-421.
DOI: 10.1016/j.jmmm.2004.06.014
Google Scholar
[6]
Q.H. Jiang, C.W. Nan, Y. Wang, Y.H. Liu, Z.J. Shen, Synthesis and properties of multiferroic BiFeO3 ceramics, J. Electron. Mater. 21 (2008) 690–693.
DOI: 10.1007/s10832-007-9265-5
Google Scholar
[7]
H. Yang, T. Xian, Z.Q. Wei, J.F. Dai, J.L. Jiang, W.J. Feng, Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route, J. Sol-Gel. Sci. Technol. 58 (2011) 238–243.
DOI: 10.1007/s10971-010-2383-6
Google Scholar
[8]
X.D. Qia, M. Wei, Y. Lin, Q.X. Jia, D. Zhi, J. Dho, M.G. Blamire, J.L. MacManus-Driscoll, High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films, Appl. Phys. Lett. 86 (2005) 1-3.
DOI: 10.1063/1.1866214
Google Scholar