Enhanced Photocatalytic Performance of Oriented ZnWO4 Nanorods via Graphene Hybridization

Article Preview

Abstract:

The hybridization of graphene with oriented ZnWO4 photocatalysts effectively enhanced the photocatalytic activity. The enhancement in photocatalytic performance was relied on the amount of graphene and the optimal hybridized amount of graphene was about 2 wt%. The photocatalytic activity was increased by about 3 times after ZnWO4 was hybridized with graphene under UV irradiation. The enhancement mechanism of the photocatalytic activity is attributed to the higher separation efficiency and the inhibition of recombination of photoinduced electron-hole pairs.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

970-974

Citation:

Online since:

March 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Nature. 238 (1972) 37-38.

Google Scholar

[2] S. Sato, J. M. White, Chem. Phys. Lett. 72 (1980) 83-86.

Google Scholar

[3] M. Zhang, Q. Wang, C.C. Chen, et al., Angew. Chem. Int. Ed. 48 (2009) 6081-6084.

Google Scholar

[4] A. Iwase, A. Kudo, J. Mater. Chem. 20 (2010) 7536-7542.

Google Scholar

[5] C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev. 39 (2010) 4206-4219.

Google Scholar

[6] S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26 (2010) 3894-3901.

Google Scholar

[7] C.P. Wu, Y. Zhou, Z.G. Zou, Chin. J. Catal. 32 (2011) 1565-1572.

Google Scholar

[8] X. Zhao, Y. F. Zhu, Environ. Sci. Technol. 40 (2006) 3367-3372.

Google Scholar

[9] X.C. Song, Y.F. Zheng, E. Yang, et al., J. Hazard. Mater. 179 (2010) 1122-1127.

Google Scholar

[10] H.B. Fu, J. Lin, L.W. Zhang, Y.F. Zhu, Appl. Catal. A: Gerneral 306 (2006) 58-67.

Google Scholar

[11] R.P. Jia, Q.S. Wu, G.X. Zhang, X.P. Ding, J. Mater. Sci. 42 (2007) 4887-4891.

Google Scholar

[12] P. Parhi, T.N. Karthik, V. Manivannan, J. Alloy. Comp. 465 (2008) 380-386.

Google Scholar

[13] J. Lin, J. Lin, Y.F. Zhu, Inorg. Chem. 46 (2007) 8372-8378.

Google Scholar

[14] J.H. Bi, L. Wu, Z.H. Li, Z.X. Ding, X.X. Wang, X.Z. Fu, J. Alloy. Com. 480 (2009) 684-688.

Google Scholar

[15] R. Shi, Y.J. Wang, D. Li, J. Xu, Y.F. Zhu, Appl. Catal. B: Environ. 100 (2010) 173-178.

Google Scholar

[16] Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Appl. Catal. B: Environ. 100 (2010) 179-183.

Google Scholar

[17] F. Zhou, Y.F. Zhu, J. Adv. Ceram., 1 (2012) 72-78.

Google Scholar

[18] F. Zhou, R. Shi, Y.F. Zhu, J. Mol. Catal. A: Chem. 340 (2011) 77-82.

Google Scholar

[19] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339.

Google Scholar

[20] A. Kalinko, A. Kuzmin, J. Luminescence. 129 (2009) 1144-1147.

Google Scholar

[21] T. Xu, Y. Cai, K. E. O'Shea, Environ. Sci. Technol. 41(2007) 5471-5477.

Google Scholar