Photoelectrochemical Activity of Cu-Loaded TiO2 Nanotube Arrays by AC Electrodeposition

Article Preview

Abstract:

This work presents a novel approach for preparing Cu-loaded TiO2 nanotube arrays through alternating current electrodeposition. The Cu content loaded on the arrays was controlled by changing the concentration of Cu (NO3)2 solution, deposition voltage and time. The surface morphology and crystal structure of Cu-loaded TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM) and the X-ray diffraction (XRD). The effects of Cu content on the photoelectrochemical property were studied in detail. Results show that Cu-loaded TiO2 nanotube arrays have evidently enhanced photoelectrochemical activity. The photocurrent of Cu-loaded TiO2 nanotube arrays prepared in 0.00625 mol/L Cu (NO3)2 solution at 12 V for 20 seconds was 5.7 and 2.3 times as that of unloaded TiO2 nanotube arrays under visible and UV radiation, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

980-984

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Lamberti, A. Sacco, S. Bianco, Enhancement of electron lifetime in dye-sensitized solar cells using anodically grown TiO2 nanotube/nanoparticle composite photoanodes, Microelectron Eng. 111 (2013) 137-142.

DOI: 10.1016/j.mee.2013.03.037

Google Scholar

[2] K.Y. Kang, Y.G. Lee, S. Kim, S.R. Seo, Electrochemical properties of carbon-coated TiO2 nanotubes as a lithium battery anode material, Mater Chem Phys. 137 (2012) 169-176.

DOI: 10.1016/j.matchemphys.2012.09.001

Google Scholar

[3] T. Kida, M.H. Seo, K. Suematsu, M. Yuasa, Y. Kanmura, K. Shimanoe, A Micro Gas Sensor Using TiO2 Nanotubes to Detect Volatile Organic Compounds, Appl Phys Express. 6 (2013).

DOI: 10.7567/apex.6.047201

Google Scholar

[4] M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, Formation of Titania Nanotubes with High Photo-Catalytic Activity, Chem Lett. 29 (2000) 942-943.

DOI: 10.1246/cl.2000.942

Google Scholar

[5] S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science. 297 (2002) 2243-2245.

DOI: 10.1126/science.1075035

Google Scholar

[6] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454-456.

DOI: 10.1063/1.1493647

Google Scholar

[7] V. Subramanian, E.E. Wolf, P.V. Kamat, Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles, Langmuir. 19 (2003) 469-474.

DOI: 10.1021/la026478t

Google Scholar

[8] D. Lahiri, V. Subramanian, T. Shibata, Photoinduced transformations at semiconductor/metal interfaces: X-ray absorption studies of titania/gold films, J. Appl. Phys. 93 (2003) 2575-2582.

DOI: 10.1063/1.1544068

Google Scholar

[9] M.G. Hosseini, M.M. Momeni, M. Faraji, Fabrication of Au-Nanoparticle/TiO2-Nanotubes Electrodes Using Electrochemical Methods and Their Application for Electrocatalytic Oxidation of Hydroquinone, Electroanal. 23 (2011) 1654-1662.

DOI: 10.1002/elan.201000656

Google Scholar

[10] J. Zhao, X. Wang, T. Sun, L. Li, Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization, J. Alloy. Compd. 434–435 (2007) 792-795.

DOI: 10.1016/j.jallcom.2006.08.317

Google Scholar

[11] T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions, Chem. Eng. J. 95 (2003) 179-186.

DOI: 10.1016/s1385-8947(03)00103-7

Google Scholar

[12] X.G. Hou, M.D. Huang, X.L. Wu, A.D. Liu, Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol–gel method, Chem. Eng. J. 146 (2009) 42-48.

DOI: 10.1016/j.cej.2008.05.041

Google Scholar

[13] V. Vamathevan, R. Amal, D. Beydoun, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. Photobiol. A. 148 (2002) 233-245.

DOI: 10.1016/s1010-6030(02)00049-7

Google Scholar