[1]
D. G. Sanderson and L. B. Anderson. Analytical Chemistry, 57(12):2388-2393, 1985. 80
Google Scholar
[2]
O. Niwa, M. Morita, and H. Tabei. Analytical Chemistry, 62(5):447-452, 1990. 80
Google Scholar
[3]
A. J. Bard, J. A. Crayston, G. P. Kittlesen, T. Varco Shea, and M. S. Wrighton. Analytical Chemistry, 58(11):2321-2331, 1986. 80[4] K. Ueno, M. Hayashida, J. Y. Ye, and H. Misawa. Electrochemistry Communications, 7:161-165, 2005. 80
DOI: 10.1021/ac00124a045
Google Scholar
[5]
M. Beck, F. Persson, P. Carlberg, M. Graczyk, I. Maximov, T. Ling, and L. Montelius. Microelectronic Engineering, 73-74:837-842, 2004. 81
Google Scholar
[6]
L. H. D. Skjolding, C. Spegel, A. Ribayrol, J. Emn ́ us, and L. Montelius. Journal of Physics: Conference Series, 100(5):52045, 2008.
Google Scholar
[7]
E. D. Goluch, B. Wolfrum, P. S. Singh, M. A. G. Zevenbergen, and S. G. Lemay. Analytical and Bioanalytical Chemistry, 394(2):447-456, 2009. 80
DOI: 10.1007/s00216-008-2575-x
Google Scholar
[8]
K. Hayashi, J. Takahashi, T. Horiuchi, Y. Iwasaki, and T. Haga. Journal of the Electrochemical Society, 155:J240-J243, 2008. 80
Google Scholar
[9]
B. Wolfrum, M. Zevenbergen, and S. Lemay. Analytical Chemistry, 80(4):972-977, 2008. 80
Google Scholar
[10]
M. A. G. Zevenbergen, B. L. Wolfrum, E. D. Goluch, P. S. Singh, and S. G. Lemay. Journal of the American Chemical Society, 131(32):11471-11477, 2009.
DOI: 10.1021/ja902331u
Google Scholar
[11]
M. A. G. Zevenbergen, D. Krapf, M. R. Zuiddam, and S. G. Lemay. Nano Letters, 7:384-388, 2007.
Google Scholar
[12]
M. A. G. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay. Analytical Chemistry, 81(19):8203-8212, 2009.
DOI: 10.1021/ac9014885
Google Scholar
[13]
M. A. G. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay. Nano Letters, pages 2881-2886, 2011.
DOI: 10.1021/nl2013423
Google Scholar
[14]
K. Mathwig, D. Mampallil, S. Kang, and S. G. Lemay. Physical Review Letters, 109(11):1-5, 2012. 80
Google Scholar
[15]
E. Katelhon, B. Hofmann, S. G. Lemay, M. A. G. Zevenbergen, A. Offenhausser, and B. Wolfrum. Analytical Chemistry, 82(20):8502-9, 2010. 80
Google Scholar
[16]
S. Neugebauer, A. Zimdars, P. Liepold, M. Gebala, W. Schuhmann, and G. Hartwich. ChemBioChem, 10(7):1193-1199, 2009. 80
DOI: 10.1002/cbic.200800767
Google Scholar
[17]
G. S. McCarty, B. Moody, and M. K. Zachek. Journal of Electroanalytical Chemistry, 643(1-2):9- 14, 2010. 80, 81
Google Scholar
[18]
T. Nagase, T. Kubota, and S. Mashiko. Thin Solid Films, 438:374-377, 2003. 80
Google Scholar
[19]
T. Nagase, K. Gamo, T. Kubota, and S. Mashiko. Thin Solid Films, 499(1-2):279-284, 2006. 80
DOI: 10.1016/j.tsf.2005.07.031
Google Scholar
[20]
G. C. Gazzadi, E. Angeli, P. Facci, and S. Frabboni. Applied Physics Letters, 89(17):173112, 2006.
Google Scholar
[21]
T. Blom, K. Welch, M. Stromme, E. Coronel, and K. Leifer. Nanotechnology, 18(28):285301, 2007.
Google Scholar
[22]
A. K. Singh, N. S. Rajput, N. Shukla, S. K. Tripathi, J. Kumar, and V. N. Kulkarni. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19):3282-3286, 2010. 80
DOI: 10.1016/j.nimb.2010.06.016
Google Scholar
[23]
Y. Wu, T. Akiyama, S. Gautsch, and N. de Rooij. Procedia Engineering, 25:1661-1664, 2011. 80
Google Scholar