Submicron Electrode Gaps Fabricated by Gold Electrodeposition at Interdigitated Electrodes

Article Preview

Abstract:

Electrodes with submicron gaps are desired for achieving high ampli cation redoxcycling sensors. In this contribution we report the use of electrodeposition of gold in order todecrease the inter-electrode spacing at interdigitated electrodes. Using this method submicronspacings can be obtained without expensive techniques such as e-beam lithography or focusedion beam milling. Initially, gold interdigitated electrodes with a nger spacing of 2.5 m wererealized by lift-o processing. Using a commercial gold sulphite bath (ECF64D) and 100 mscurrent pulses of -1.78 A, these gold electrodes were plated with an additional gold layer. Asa result, the inter- electrode spacing, as measured using atomic force microscopy and conven-tional microscopy, was reduced to 0.6 m. The achieved gap spacing is limited by electrodeimperfections resulting from the lift-o process. At these imperfections the electrodes becomeshorted. Additional experiments with wet etched electrodes are expected to yield smaller gapspacings

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-110

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. G. Sanderson and L. B. Anderson. Analytical Chemistry, 57(12):2388-2393, 1985. 80

Google Scholar

[2] O. Niwa, M. Morita, and H. Tabei. Analytical Chemistry, 62(5):447-452, 1990. 80

Google Scholar

[3] A. J. Bard, J. A. Crayston, G. P. Kittlesen, T. Varco Shea, and M. S. Wrighton. Analytical Chemistry, 58(11):2321-2331, 1986. 80[4] K. Ueno, M. Hayashida, J. Y. Ye, and H. Misawa. Electrochemistry Communications, 7:161-165, 2005. 80

DOI: 10.1021/ac00124a045

Google Scholar

[5] M. Beck, F. Persson, P. Carlberg, M. Graczyk, I. Maximov, T. Ling, and L. Montelius. Microelectronic Engineering, 73-74:837-842, 2004. 81

Google Scholar

[6] L. H. D. Skjolding, C. Spegel, A. Ribayrol, J. Emn ́ us, and L. Montelius. Journal of Physics: Conference Series, 100(5):52045, 2008.

Google Scholar

[7] E. D. Goluch, B. Wolfrum, P. S. Singh, M. A. G. Zevenbergen, and S. G. Lemay. Analytical and Bioanalytical Chemistry, 394(2):447-456, 2009. 80

DOI: 10.1007/s00216-008-2575-x

Google Scholar

[8] K. Hayashi, J. Takahashi, T. Horiuchi, Y. Iwasaki, and T. Haga. Journal of the Electrochemical Society, 155:J240-J243, 2008. 80

Google Scholar

[9] B. Wolfrum, M. Zevenbergen, and S. Lemay. Analytical Chemistry, 80(4):972-977, 2008. 80

Google Scholar

[10] M. A. G. Zevenbergen, B. L. Wolfrum, E. D. Goluch, P. S. Singh, and S. G. Lemay. Journal of the American Chemical Society, 131(32):11471-11477, 2009.

DOI: 10.1021/ja902331u

Google Scholar

[11] M. A. G. Zevenbergen, D. Krapf, M. R. Zuiddam, and S. G. Lemay. Nano Letters, 7:384-388, 2007.

Google Scholar

[12] M. A. G. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay. Analytical Chemistry, 81(19):8203-8212, 2009.

DOI: 10.1021/ac9014885

Google Scholar

[13] M. A. G. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay. Nano Letters, pages 2881-2886, 2011.

DOI: 10.1021/nl2013423

Google Scholar

[14] K. Mathwig, D. Mampallil, S. Kang, and S. G. Lemay. Physical Review Letters, 109(11):1-5, 2012. 80

Google Scholar

[15] E. Katelhon, B. Hofmann, S. G. Lemay, M. A. G. Zevenbergen, A. Offenhausser, and B. Wolfrum. Analytical Chemistry, 82(20):8502-9, 2010. 80

Google Scholar

[16] S. Neugebauer, A. Zimdars, P. Liepold, M. Gebala, W. Schuhmann, and G. Hartwich. ChemBioChem, 10(7):1193-1199, 2009. 80

DOI: 10.1002/cbic.200800767

Google Scholar

[17] G. S. McCarty, B. Moody, and M. K. Zachek. Journal of Electroanalytical Chemistry, 643(1-2):9- 14, 2010. 80, 81

Google Scholar

[18] T. Nagase, T. Kubota, and S. Mashiko. Thin Solid Films, 438:374-377, 2003. 80

Google Scholar

[19] T. Nagase, K. Gamo, T. Kubota, and S. Mashiko. Thin Solid Films, 499(1-2):279-284, 2006. 80

DOI: 10.1016/j.tsf.2005.07.031

Google Scholar

[20] G. C. Gazzadi, E. Angeli, P. Facci, and S. Frabboni. Applied Physics Letters, 89(17):173112, 2006.

Google Scholar

[21] T. Blom, K. Welch, M. Stromme, E. Coronel, and K. Leifer. Nanotechnology, 18(28):285301, 2007.

Google Scholar

[22] A. K. Singh, N. S. Rajput, N. Shukla, S. K. Tripathi, J. Kumar, and V. N. Kulkarni. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19):3282-3286, 2010. 80

DOI: 10.1016/j.nimb.2010.06.016

Google Scholar

[23] Y. Wu, T. Akiyama, S. Gautsch, and N. de Rooij. Procedia Engineering, 25:1661-1664, 2011. 80

Google Scholar