Preparation and Selectivity of Resistive Acetone Gas Sensors Based on Polyaniline/Au Interdigitated Electrode

Article Preview

Abstract:

The acetone gas sensor can be applied in the fields of the occupational safety, the prevention of fire accident and explosion in plants and the diabetic patients breathe analysis. The properties of the sensing materials and the sensing characteristics of the acetone gas sensors based on polyaniline (PANI)/Au/porous ceramic plate prepared by the microfabrication technologies and the electrochemical methods are studied in this work. PANI with stable sensing performance is prepared by a three-stage chronopotentiometric method onto Au/porous ceramic plate. The PANI nanowires are uniformly distributed on Au interdigitated electrode surface characterized by field emission scanning electron microscopy (FESEM).The sensitivity and the response time of the resistive acetone gas sensor are obtained to be 4.0×10-3 % ppm-1 and 3 min when using N2 as carrier gas. Based on the same sensing electrode, the sensitivities of the gas sensor to mixed gas containing acetone are measured.Key words: gas sensor; acetone; polyaniline; sensitivity; selectivity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-206

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Righettoni and A.Tricoli: J. Breath. Res. Vol. 5 (2011), 037109

Google Scholar

[2] F. Bender, N. Barié, G. Romoudis, A. Voigt and M. Rapp: Sens. Actuat. B Vol. 93 (2003), p.135

Google Scholar

[3] P. Song, Q. Wang and Z.Yang: Sens. Actuat. B Vol. 173 (2012), p.839

Google Scholar

[4] X. Wang, W. Wang and Y.L. Liu: Sens. Actuat. B Vol. 168 (2012), p.39

Google Scholar

[5] J. Zhang, S.R. Wang, Y. Wang, M.J. Xu, H.J. Xia, S.M Zhang, W.P Huang, X.Z. Guo and S.H. Wu: Sens. Actuat. B Vol. 139 (2009), p.411

Google Scholar

[6] T. Thnpitcha, A. Sirivat, A.M. Jamieson and R. Rujiravanit: Synthetic. Mat. Vol. 158 (2008), p.695

Google Scholar

[7] J. Sarfraz, D. Tobjork, R. Osterback and M. Linden: IEEE Sens. J. Vol. 12 (2012), p. (1973)

Google Scholar

[8] N. Menegazzo, D. Boyne, H. Bui, T.P. Beebe and K.S. Booksh: Anal. Chem. Vol. 84 (2012), p.5770

Google Scholar

[9] I. Venditti, I. Fratoddi, M.V. Russo and A. Bearzotti: Nanotechnology Vol. 24 (2013), 155503

Google Scholar

[10] S. Pramanik, G. Das and N. Karak: RSC Adv. Vol. 3 (2013), p.4574

Google Scholar

[11] L. Zhang, H.Y. Ma, F. Cao, J. Gong, Z.M. Su: J. Polym Sci. Pol. Chem. Vol. 50 (2012), p.912

Google Scholar

[12] C.J. Liu, K. Hayashi and K. Toko: Macromolecules Vol. 44 (2011), p.2212

Google Scholar

[13] P. Gao, H.M. Ji, Y.G. Zhou and X.L. Li: Thin Solid Films Vol. 520 (2012), p.3100

Google Scholar

[14] H.K. Jun, Y.S. Hoh, B.S. Lee, S.T. Lee, J.O. Lim, D.D. Lee and J.S. Huh: Sens. Actuat. B Vol. 96 (2003), p.576

Google Scholar

[15] J.S. Do and S.H. Wang: Sensor Actuat. B Vol.185 (2013), p.39

Google Scholar