Nickel Porous Electrode Pt Layered by PVD Method

Article Preview

Abstract:

Influence of a platinum layer on the nickel powder sintered electrode on electrochemical processes of hydrogen generation is presented and discussed in this paper. The sinters of metallic nickel with developed area were obtained by subsequent oxidation/reduction of Ni powder. The process of platinum layer deposition on surface of nickel sinters was carried out with the PVD method. The morphology characteristics of Ni and Ni-Pt layered sinters were carried out with the application of SEM/EDS method. The electrochemical properties of above mentioned sinters were examined by potentiostatic method at 40°C in 1M KOH vs. Hg|HgO, using a rotating disc electrode. It was found that the platinum layer on the surface of nickel grains was well adherent and stable. The presence of platinum on nickel sintered electrodes results in an increase of observed current density in the process of hydrogen evolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-363

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Liu, A. Almansoori, M. Fowler, A. Elkamel, Int. J. of Hydrogen Energy, 37 (2012), pp.8905-8916

Google Scholar

[2] A. Midilli, I. Dincer, Int. J. of Hydrogen Energy, 32 (2007), pp.511-524

Google Scholar

[3] R. Solmaz, A. Gündoğdu, A. Döner, G. Kardaş, Int. J. of Hydrogen Energy, 37 (2012), pp: 8917-8922

DOI: 10.1016/j.ijhydene.2012.03.008

Google Scholar

[4] T.N. Veziroglu, F. Barbir, Int. J. of Hydrogen Energy, 17 (1992), pp.391-404

Google Scholar

[5] A. Jaron, Z. Zurek, Solid State Ionics, 181 (2010), pp.976-981

Google Scholar

[6] C. Hu, Y.R.Wu, Meter. Chem. Phys., 82 (2003), pp.588-596

Google Scholar

[7] M. Daamouche, H. Medouer, A. Guittoum, S. Messaadi, S. H. Karagianni, Sensor Letters, 11(4) (2013), pp.670-674(5)

DOI: 10.1166/sl.2013.2937

Google Scholar

[8] R. Solmaz, A. Gündoğdu, A. Döner, G. Kardaş, Int. J. of Hydrogen Energy, 34 (2009), pp.2089-2094

Google Scholar

[9] A. Jaron, Z. Zurek, Ochrona przed Korozja (Corrosion Protection), 55 (2012), pp.467-469

Google Scholar

[10] C. Lupi, A. Dell'Era, M. Pasquali, Int. J. Hydrogen Energy, 34 (2009), pp.2101-2106

Google Scholar

[11] A. Jaron, Z. Zurek, Arch. of Metallurgy and Materials, 53 (2008), pp.847-853

Google Scholar

[12] J. Wang , J. You, Z. Li, P. Yang, X. Jing, M. Zhang, J. Electroanal. Chem., 624 (2011), pp.241-244

Google Scholar

[13] I. Bianchi, E. Guerrini, S. Trasetti, Chem. Phys., 319 (2005), pp.192-199

Google Scholar

[14] W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of fuel cells: fundamentals Technology and applications, England, John Wily & Sons Ltd, (2003), pp.416-440

Google Scholar

[15] A. Kamínska, S. Krawczyk, M. Kozłowski, E. Czerwosz, K. Sobczak, Sensor Letters, 11(3) (2013), pp.500-504(5)

DOI: 10.1166/sl.2013.2915

Google Scholar

[16] J.B. Yadav, J.W. Park, K.D. Jung, O.S. Joo, Int. J. Hydrogen Energy, 35 (2010), pp.6541-6548

Google Scholar

[17] A.Jaron, Z.Zurek, ECS Transactions, 45 (2013), pp.89-95

Google Scholar

[18] A. Jaron, Ochrona przed Korozja, 55 (2012), pp.117-120

Google Scholar