Functionalized Carbon Nanotubes-Based Gas Sensors for Pollutants Detection: Investigation on the Use of a Double Transduction Mode

Article Preview

Abstract:

With an objective to fabricate Carbon nanotubes (CNTs) based sensors, the solution route is investigated. The dispersion routes are chosen here to avoid the CNTs to form bundles which can reduce their surface area. The results show that SWNTs-based gas sensors made by the surfactant method is possible if the annealing temperature is correctly chosen. The use of a surfactant allows preparing sensing layers which present responses to NO2 exposure in the 50-200 ppb Range. In a second procedure the CNTs are noncovalently functionalized and used as sensing material for BTX (Benzene, Toluene and Xylenes) detection. The noncovalent functionalisation occurs through p-p stacking between the SWNTs framework and the highly delocalized π-system of the macrocycle which are phthalocyanines and porphyrines derivatives. The SWNTs materials are characterized by standard techniques (UV-Vis spectroscopy, TGA, TEM, Raman analysis). For BTX detection, we used a double transduction mode: IDEs (Interdigitated electrodes) and QCM (Quartz Crystal Microbalance) in order to get insight into the sensing mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-78

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dai, Carbon Nanotubes: opportunities and challenges, Surface Science, 500 (2002) 218.

Google Scholar

[2] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science, 287 (2000) 622.

Google Scholar

[3] J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Chemical Communications, (2001) 193.

Google Scholar

[4] V. Derycke, S. Auvray, J. Borghetti, C.-L. Chung, R. Lefèvre, A. Lopez-Bezanilla, K. Nguyen, G. Robert, G. Schmidt, C. Anghel, et al., Comptes Rendus Physique, 10 (2009) 330.

DOI: 10.1016/j.crhy.2009.05.006

Google Scholar

[5] M. Bystrzejewski, A. Huczko, H. Lange, T. Gemming, B. Büchner, M.H. Rümmeli, Journal Colloid and Interface Science, 345 (2010) 138.

DOI: 10.1016/j.jcis.2010.01.081

Google Scholar

[6] M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Letters, 3 (2003) 269.

Google Scholar

[7] V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Letters, 3 (2003) 1379.

DOI: 10.1021/nl034524j

Google Scholar

[8] J.P. Lukaszewicz, Carbon Materials for Chemical Sensors: A Review, Sensor Letters, 4 (2006) 53.

Google Scholar

[9] G. Sauerbrey, Zeitschrift für Physik A Hadrons and Nuclei, 155 (1959) 206-222.

Google Scholar

[10] A.L. Ndiaye, C. Varenne, P. Bonnet, E. Petit, L. Spinelle, J. Brunet, A. Pauly, B. Lauron, Sensors and Actuators B: Chemical, 162 (2012) 95.

DOI: 10.1016/j.snb.2011.12.041

Google Scholar