Influence of the Microstructure on Macro/Micro versus Nanohardness of SiC Ceramics

Article Preview

Abstract:

The influence of microstructural variations on the macro/microhardness, nanohardness and Young`s modulus of liquid phase sintered silicon carbide (LPS SiC) has been observed. In order to modify the microstructures some samples were further heat treated at 1850°C for 5 hours to promote grain growth. The depth-sensing indentation tests of SiC materials were performed at several peak loads in the range 10-400 mN. For a better assessment, the indentation values of hardness and Young`s modulus modulus of SiC matrix were also compared to the hardness and Elastic modulus of individual SiC grains. The comparison of macro/micro and nanohardness showed that nanohardness was significantly higher, generally by 6-7 GPa. The nanohardness of individual plate-like SiC grains was around 2 GPa higher than nanohardness of SiC matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-200

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kovalčíková, J. Dusza, P. Šajgalík, Influence of the heat treatment on mechanical properties and oxidation resistance of SiC-Si3N4 composites, Ceram. Int. 39 (2013) 7951-7957.

DOI: 10.1016/j.ceramint.2013.03.059

Google Scholar

[2] H. Tanaka, U. Zhou, Low temperature sintering and elongated grain growth of 6h-SiC powder with AlB2 and C additives, J. Mater. Res. 14 (1999) 519-522.

DOI: 10.1557/jmr.1999.0074

Google Scholar

[3] D. Sciti, S. Guicciardi, A. Belosi, Effect of annealing treatments on microstructure and mechanical properties of liquid-phase-sintered silicon carbide, J. Eur. Ceram. Soc. 21 (2001) 621-632.

DOI: 10.1016/s0955-2219(00)00254-5

Google Scholar

[4] N.P. Padture, In situ-toughened silicon carbide, J. Am. Ceram. Soc. 77 (1994) 519-523.

Google Scholar

[5] Focus topic: nanoindentation, J. Mater. Res. 19 (2004) 3-395.

Google Scholar

[6] W.C. Olivier, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[7] A. Vysocká, J. Špaková, J. Dusza, M. Balog, P. Šajgalík, Microstructure and mechanical properties of liquid-phase-sintered SiC + Si3N4 composites, Metallic Materials 45 (2007) 223-229.

Google Scholar

[8] S. Guicciardi, D. Sciti, C. Melandri, A. Bellosi, Nanondentation characterization of submicro- and nano-sized liquid-phase-sintered SiC ceramics, J. Am. Ceram. Soc. 87 (2004) 2101-2107.

DOI: 10.1111/j.1151-2916.2004.tb06366.x

Google Scholar

[9] S. Guicciardi, A. Balbo, D. Sciti, C. Melandri, G. Pezzoti, Nanoindentation characterization of SiC-based ceramics, J. Eur. Ceram. Soc. 27 (2007) 1399-1404.

DOI: 10.1016/j.jeurceramsoc.2006.05.057

Google Scholar

[10] M. Balog, P. Šajgalík, M. Hnatko, Z. Lenčéš, F. Monteverde, J. Kečkéš, J. -L. Huang, Nano-versus macro-hardness of liquid phase sintered SiC, J. Eur. Ceram. Soc. 25 (2005) 529-534.

DOI: 10.1016/j.jeurceramsoc.2004.01.026

Google Scholar

[11] R.W. Rice, C.C. Wu, F. Borchelt, Hardness-grain size relation in ceramics, J. Am. Ceram. Soc. 77 (1994) 2539-2553.

Google Scholar