Densification as the Only Mechanism at Stake during Indentation of Silica Glass?

Article Preview

Abstract:

Silica glass is known to exhibit permanent changes in density under very high pressures. These changes may reach 21%. The sharp indentation test develops pressures underneath the indenter that trigger densification. Recently, we have proposed a constitutive modeling of the pressure-induced process accounting for its salient features: densification threshold, hardening, saturation of densifica- tion and permanent increase in elastic moduli. We examine in this paper the possibility that densi- fication could be the only mechanism for creating an imprint by indentation. We consider different models with growing complexity that we implement in a finite element software. Results indicate that the combination of shear and pressure as a driving force to densification may account for the mechanical response of the indentation test as well as the presence of densified zone underneath the imprint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-60

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, Indentation deformation/fracture of normal and anomalous glasses, J. Non. Cryst. Solids 31 (1979) 415-428.

DOI: 10.1016/0022-3093(79)90154-6

Google Scholar

[2] V. le Houérou, J. -C. Sangleboeuf, S. Dériano, T. Rouxel, G. Duisit, Surface damage of soda- lime-silica glasses: indentation scratch behavior, J. Non. Cryst. Solids 316 (2003) 54-63.

DOI: 10.1016/s0022-3093(02)01937-3

Google Scholar

[3] D. M. Marsh, Plastic Flow and Fracture of Glass, Proc. R. Soc. A Math. Phys. Eng. Sci. 282 (1964) 33-43.

Google Scholar

[4] F. M. Ernsberger, Role of Densification in Deformation of Glasses Under Point Loading, J. Am. Ceram. Soc. 51 (1968) 545-547.

DOI: 10.1111/j.1151-2916.1968.tb13318.x

Google Scholar

[5] K. Peter, Densification and flow phenomena of glass in indentation experiments, J. Non. Cryst. Solids 5 (1970) 103-115.

DOI: 10.1016/0022-3093(70)90188-2

Google Scholar

[6] H. Ji,V. Keryvin, T. Rouxel, T. Hammouda, Densification ofwindowglass under very high pressure and its relevance to Vickers indentation, Scr. Mater. 55 (2006) 1159-1162.

DOI: 10.1016/j.scriptamat.2006.08.038

Google Scholar

[7] T. Rouxel, H. Ji, V. Keryvin, T. Hammouda, S. Yoshida, Poisson's Ratio and the Glass Network Topology - Relevance to High Pressure Densification and Indentation Behavior, Adv. Mater. Res. 39-40 (2008) 137-146.

DOI: 10.4028/www.scientific.net/amr.39-40.137

Google Scholar

[8] M. Imaoka, I. Yasui, Finite element analysis of indentation on glass, J. Non. Cryst. Solids 22 (1976) 315-329.

DOI: 10.1016/0022-3093(76)90062-4

Google Scholar

[9] I. Yasui, M. Imaoka, Finite element analysis of identation on glass(II), J. Non. Cryst. Solids 50 (1982) 219-232.

DOI: 10.1016/0022-3093(82)90269-1

Google Scholar

[10] J. C. Lambropoulos, S. Xu, T. Fang, Constitutive Law for the Densification of Fused Silica, with Applications in Polishing and Microgrinding, J. Am. Ceram. Soc. 79 (1996) 1441-1452.

DOI: 10.1111/j.1151-2916.1996.tb08748.x

Google Scholar

[11] K. Xin, J. C. Lambropoulos, Densification of Fused Silica : Effects on Nanoindentation, in: A. J. Marker III, E. G. Arthurs (Eds. ), Inorg. Opt. Mater. II. SPIE, vol. 4102 (2000) 112-121.

DOI: 10.1117/12.405275

Google Scholar

[12] G. Kermouche, E. Barthel, D. Vandembroucq, P. Dubujet, Mechanical modelling of indentationinduced densification in amorphous silica, Acta Mater. 56 (2008) 3222-3228.

DOI: 10.1016/j.actamat.2008.03.010

Google Scholar

[13] V. Keryvin, Indentation as a probe for pressure sensitivity of metallic glasses., J. Phys. Condens. Matter 20 (2008) 114119.

DOI: 10.1088/0953-8984/20/11/114119

Google Scholar

[14] K. E. Prasad, V. Keryvin, U. Ramamurty, Pressure sensitive flow and constraint factor in amorphous materials below glass transition, J. Mater. Res. 24 (2009) 865-872.

DOI: 10.1557/jmr.2009.0113

Google Scholar

[15] V. Keryvin, J. -X. Meng, S. Gicquel, J. -P. Guin, L. Charleux, J. -C. Sangleboeuf, P. Pilvin, T. Rouxel, G. Le Quilliec, Constitutivemodeling of the densification process in silica glass under hydrostatic compression, Acta Mater. 62 (2014).

DOI: 10.1016/j.actamat.2013.07.067

Google Scholar

[16] T. Sato, N. Funamori, Sixfold-Coordinated Amorphous Polymorph of SiO2 under High Pressure, Phys. Rev. Lett. 101 (2008) 255502.

DOI: 10.1103/physrevlett.101.255502

Google Scholar

[17] D. Wakabayashi, N. Funamori, T. Sato, T. Taniguchi, Compression behavior of densified SiO2 glass, Phys. Rev. B 84 (2011) 144103.

Google Scholar

[18] C. R. Kurkjian, G. W. Kammlott, M. M. Chaudhri, Indentation Behavior of Soda-Lime Silica Glass, Fused Silica, and Single-Crystal Quartz at Liquid Nitrogen Temperature, J. Am. Ceram. Soc. 78 (1995) 737-744.

DOI: 10.1111/j.1151-2916.1995.tb08241.x

Google Scholar

[19] C. Bernard, V. Keryvin, J. -C. Sangleoeuf, T. Rouxel, Indentation creep of window glass around glass transition, Mech. Mater. 42 (2010) 196-206.

DOI: 10.1016/j.mechmat.2009.11.008

Google Scholar

[20] A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, B. Champagnon, Raman Microspectroscopic Characterization of Amorphous Silica Plastic Behavior, J. Am. Ceram. Soc. 89 (2006) 596-601.

DOI: 10.1111/j.1551-2916.2005.00747.x

Google Scholar

[21] S. Yoshida, J. -C. Sangleboeuf, T. Rouxel, Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res. 20 (2005) 3404-3412.

DOI: 10.1557/jmr.2005.0418

Google Scholar

[22] B. Mantisi, A. Tanguy, G. Kermouche, E. Barthel, Atomistic response of a model silica glass under shear and pressure, Eur. Phys. J. B 85 (2012) 304.

DOI: 10.1140/epjb/e2012-30317-6

Google Scholar

[23] Y. -F. Niu, K. Han, J. -P. Guin, Locally enhanced dissolution rate as a probe for nanocontactinduced densification in oxide glasses., Langmuir 28 (2012) 10733-40.

DOI: 10.1021/la300972j

Google Scholar