Numerical Simulation of Microstructure Evolution in AZ31 Magnesium Alloy during Equal Channel Angular Pressing

Article Preview

Abstract:

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

495-499

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Yamashita, Z. Horita, T. G. Langdon, Mat. Sci. Eng. A-struct., Vol 300, (2001) p.142.

Google Scholar

[2] K. Mueller, S. Mueller, J. Mater. Process. Tech., Vol 187, (2007) p.775.

Google Scholar

[3] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Prog. Mater. Sci., Vol 45, (2000) p.103.

Google Scholar

[4] Y. S. Na, J. T. Yeom, N. K. Park, J. Y. Lee, J. Mater. Process. Tech., Vol 141, (2003) p.337.

Google Scholar

[5] Y. P. Yi, X. Fu, J. D. Cui, H. Chen, J Cent South Univ T, Vol 15, (2008) p.1.

Google Scholar

[6] H. Watanabe, T. Mukai, K. Higashi, Metall. Mater. Trans. A, Vol 39A, (2008) p.2351.

Google Scholar

[7] H. L. Ding, K. Hirai, T. Homma, S. Kamado, Comp. Mater. Sci., Vol 47, (2010) p.919.

Google Scholar

[8] W. Xia, Z. Chen, D. Chen, S. Zhu, J. Mater. Process. Tech., Vol 209, (2009) p.26.

Google Scholar

[9] Q. D. Wang, Y. J. Chen, J. B. Lin, L. J. Zhang, C. Q. Zhai, Mater. Lett., Vol 61, (2007) p.4599.

Google Scholar

[10] Y. -b. Yang, F. -c. Wang, C. -w. Tan, Y. -y. Wu, H. -n. Cai, T. Nonferr. Metal Soc., Vol 18, (2008) p.1043.

Google Scholar

[11] M. Reihanian, R. Ebrahimi, M. M. Moshksar, D. Terada, N. Tsuji, Mater. Charact., Vol 59, (2008) p.1312.

Google Scholar