ZnO/Graphene Composites: Synthesis, Characterization and Optical Properties

Article Preview

Abstract:

ZnO/graphene composites has been synthesized using a one-pot hydrothermal method at moderate temperature of 90°C. Hydrothermal growth was done in an aqueous solution consisting of 20 mL graphene oxide (GO) solution (0.25 mg/mL) with equimolar of zinc acetate [ZAc, Zn (CH3COO)2·2H2 and hexamethylenetetramine (HMTA, C6H12N4). The as-synthesized composites was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results of the characterization indicate that GO was reduced to graphene in the growth process, while ZnO in the form of quantum dots (QDs) or nanoparticles embedded in the graphene sheet. The composites synthesized by this method will have potential applications in bioimaging, gas sensing, optoelectrical materials and devices. The photoluminescence (PL) of the conposites was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

76-81

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dong, H. X. et al. Single-crystalline tower-like ZnO microrod UV lasers. Journal of Materials Chemistry C. 1 (2013) 202-206.

Google Scholar

[2] Jean, J. et al. ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced materials. 25 (2013) 2790-2796.

DOI: 10.1002/adma.201204192

Google Scholar

[3] Huang, W. J., Fang, G. C. & Wang, C. C. A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 260 (2005) 45-51.

DOI: 10.1016/j.colsurfa.2005.01.031

Google Scholar

[4] Lim, S. K., Hwang, S. H., Kim, S. & Park, H. Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sensors and Actuators B-Chemical. 160 (2011) 94-98.

DOI: 10.1016/j.snb.2011.07.018

Google Scholar

[5] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science. 306 (2004) 666-669.

Google Scholar

[6] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Materials. 6 (2007) 183-191.

Google Scholar

[7] Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science. 320 (2008) 1308-1308.

DOI: 10.1126/science.1156965

Google Scholar

[8] Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes (vol 4, pg 217, 2009). Nature Nanotechnology. 5 (2010) 309-309.

DOI: 10.1038/nnano.2010.69

Google Scholar

[9] Stankovich, S. et al. Graphene-based composite materials. Nature. 442 (2006) 282-286.

Google Scholar

[10] Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology. 3 (2008) 327-331.

Google Scholar

[11] Kavitha, M. K., John, H., Gopinath, P. & Philip, R. Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties. Journal of Materials Chemistry C. 1 (2013) 3669-3676.

DOI: 10.1039/c3tc30323c

Google Scholar

[12] Wang, J. et al. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. Journal of Solid State Chemistry. 184 (2011) 1421-1427.

DOI: 10.1016/j.jssc.2011.03.006

Google Scholar

[13] Kavitha, T., Gopalan, A. I., Lee, K. -P. & Park, S. -Y. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon. 50 (2012) 2994-3000.

DOI: 10.1016/j.carbon.2012.02.082

Google Scholar

[14] Zou, R. J. et al. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A. 1 (2013) 8445-8452.

DOI: 10.1039/c3ta11490b

Google Scholar

[15] Saranya, M. et al. Solvothermal Preparation of ZnO/Graphene Nanocomposites and Its Photocatalytic Properties. Nanoscience and Nanotechnology Letters. 5 (2013) 349-354.

DOI: 10.1166/nnl.2013.1536

Google Scholar

[16] Kim, Y. -J., Lee, J. -H. & Yi, G. -C. Vertically aligned ZnO nanostructures grown on graphene layers. Applied Physics Letters. 95 (2009) 213101.

DOI: 10.1063/1.3266836

Google Scholar

[17] Li, B. J. & Cao, H. Q. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry. 21 (2011) 3346-3349.

DOI: 10.1039/c0jm03253k

Google Scholar

[18] Hwang, J. O. et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. Journal of Materials Chemistry. 21 (2011) 3432.

Google Scholar

[19] Chang, H. et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale. 3 (2011) 258-264.

DOI: 10.1039/c0nr00588f

Google Scholar

[20] Lu, T. et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochimica Acta. 55 (2010) 4170-4173.

DOI: 10.1016/j.electacta.2010.02.095

Google Scholar

[21] Kim, Y. J. et al. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets. Nanotechnology. 22 (2011) 245603.

DOI: 10.1088/0957-4484/22/24/245603

Google Scholar

[22] Wu, J. L., Shen, X. P., Jiang, L., Wang, K. & Chen, K. M. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Applied Surface Science. 256 (2010) 2826-2830.

DOI: 10.1016/j.apsusc.2009.11.034

Google Scholar

[23] Lu, T. et al. Microwave-assisted synthesis of graphene-ZnO nanocomposite for electrochemical supercapacitors. Journal of Alloys and Compounds. 509 (2011) 5488-5492.

DOI: 10.1016/j.jallcom.2011.02.136

Google Scholar

[24] Vayssieres, L., Keis, K., Lindquist, S. E. & Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B. 105 (2001) 3350-3352.

DOI: 10.1021/jp010026s

Google Scholar

[25] Lim, H. N., Huang, N. M., Lim, S. S., Harrison, I. & Chia, C. H. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. International Journal of Nanomedicine. 6 (2011).

DOI: 10.2147/ijn.s23392

Google Scholar

[26] Gong, M. et al. A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology. 20 (2009) 165602.

DOI: 10.1088/0957-4484/20/16/165602

Google Scholar

[27] Wang, Y. W. et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties. Journal of Crystal Growth. 234 (2002) 171-175.

DOI: 10.1016/s0022-0248(01)01661-x

Google Scholar

[28] Chiou, W. -T., Wu, W. -Y. & Ting, J. -M. Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials. 12 (2003) 1841-1844.

DOI: 10.1016/s0925-9635(03)00274-7

Google Scholar