[1]
Dong, H. X. et al. Single-crystalline tower-like ZnO microrod UV lasers. Journal of Materials Chemistry C. 1 (2013) 202-206.
Google Scholar
[2]
Jean, J. et al. ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced materials. 25 (2013) 2790-2796.
DOI: 10.1002/adma.201204192
Google Scholar
[3]
Huang, W. J., Fang, G. C. & Wang, C. C. A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 260 (2005) 45-51.
DOI: 10.1016/j.colsurfa.2005.01.031
Google Scholar
[4]
Lim, S. K., Hwang, S. H., Kim, S. & Park, H. Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sensors and Actuators B-Chemical. 160 (2011) 94-98.
DOI: 10.1016/j.snb.2011.07.018
Google Scholar
[5]
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science. 306 (2004) 666-669.
Google Scholar
[6]
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Materials. 6 (2007) 183-191.
Google Scholar
[7]
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science. 320 (2008) 1308-1308.
DOI: 10.1126/science.1156965
Google Scholar
[8]
Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes (vol 4, pg 217, 2009). Nature Nanotechnology. 5 (2010) 309-309.
DOI: 10.1038/nnano.2010.69
Google Scholar
[9]
Stankovich, S. et al. Graphene-based composite materials. Nature. 442 (2006) 282-286.
Google Scholar
[10]
Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology. 3 (2008) 327-331.
Google Scholar
[11]
Kavitha, M. K., John, H., Gopinath, P. & Philip, R. Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties. Journal of Materials Chemistry C. 1 (2013) 3669-3676.
DOI: 10.1039/c3tc30323c
Google Scholar
[12]
Wang, J. et al. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. Journal of Solid State Chemistry. 184 (2011) 1421-1427.
DOI: 10.1016/j.jssc.2011.03.006
Google Scholar
[13]
Kavitha, T., Gopalan, A. I., Lee, K. -P. & Park, S. -Y. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon. 50 (2012) 2994-3000.
DOI: 10.1016/j.carbon.2012.02.082
Google Scholar
[14]
Zou, R. J. et al. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A. 1 (2013) 8445-8452.
DOI: 10.1039/c3ta11490b
Google Scholar
[15]
Saranya, M. et al. Solvothermal Preparation of ZnO/Graphene Nanocomposites and Its Photocatalytic Properties. Nanoscience and Nanotechnology Letters. 5 (2013) 349-354.
DOI: 10.1166/nnl.2013.1536
Google Scholar
[16]
Kim, Y. -J., Lee, J. -H. & Yi, G. -C. Vertically aligned ZnO nanostructures grown on graphene layers. Applied Physics Letters. 95 (2009) 213101.
DOI: 10.1063/1.3266836
Google Scholar
[17]
Li, B. J. & Cao, H. Q. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry. 21 (2011) 3346-3349.
DOI: 10.1039/c0jm03253k
Google Scholar
[18]
Hwang, J. O. et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. Journal of Materials Chemistry. 21 (2011) 3432.
Google Scholar
[19]
Chang, H. et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale. 3 (2011) 258-264.
DOI: 10.1039/c0nr00588f
Google Scholar
[20]
Lu, T. et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochimica Acta. 55 (2010) 4170-4173.
DOI: 10.1016/j.electacta.2010.02.095
Google Scholar
[21]
Kim, Y. J. et al. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets. Nanotechnology. 22 (2011) 245603.
DOI: 10.1088/0957-4484/22/24/245603
Google Scholar
[22]
Wu, J. L., Shen, X. P., Jiang, L., Wang, K. & Chen, K. M. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Applied Surface Science. 256 (2010) 2826-2830.
DOI: 10.1016/j.apsusc.2009.11.034
Google Scholar
[23]
Lu, T. et al. Microwave-assisted synthesis of graphene-ZnO nanocomposite for electrochemical supercapacitors. Journal of Alloys and Compounds. 509 (2011) 5488-5492.
DOI: 10.1016/j.jallcom.2011.02.136
Google Scholar
[24]
Vayssieres, L., Keis, K., Lindquist, S. E. & Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B. 105 (2001) 3350-3352.
DOI: 10.1021/jp010026s
Google Scholar
[25]
Lim, H. N., Huang, N. M., Lim, S. S., Harrison, I. & Chia, C. H. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. International Journal of Nanomedicine. 6 (2011).
DOI: 10.2147/ijn.s23392
Google Scholar
[26]
Gong, M. et al. A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology. 20 (2009) 165602.
DOI: 10.1088/0957-4484/20/16/165602
Google Scholar
[27]
Wang, Y. W. et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties. Journal of Crystal Growth. 234 (2002) 171-175.
DOI: 10.1016/s0022-0248(01)01661-x
Google Scholar
[28]
Chiou, W. -T., Wu, W. -Y. & Ting, J. -M. Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials. 12 (2003) 1841-1844.
DOI: 10.1016/s0925-9635(03)00274-7
Google Scholar