A MEMS-Based Electrostatic Field Sensor Using Out-of-Plane Thermal Actuation

Article Preview

Abstract:

In this paper, we report a MEMSbased electrostatic field sensor (EFS) using out-of-plane thermal actuation. The EFS mainly consists of shuttles, sensing electrodes, and clamp-clamp beams. The clamp-clamp beam with a hump is treated as thermal actuator to drive the shuttle, which is to modulate the external electrostatic field. The EFS was fabricated by a standard surface micromachining process and the area of the EFS is less than 2.5mm×2.5mm. The EFS has been tested and achieved a resolution of 60V/m.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

921-926

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Harold, On the Measurement of Stationary Electric Fields in Air, Conference on Precision Electromagnetic Measurement 2002, pp.524-525.

Google Scholar

[2] P.S. Maravuda, R.D. Dallaire, R. Pedneault, Development of field mill instruments for ground level and above-ground electric field measurement under HVDC transmission lines, IEEE Trans. Power Apparatus and Systems, vol. PAS-102, p.738–744, Mar, (1983).

DOI: 10.1109/tpas.1983.318035

Google Scholar

[3] V.C. Negro, M.E. Cassidy R.T. Groves, A guarded insulating gate field effect transistor electrometer, IEEE Trans. Nucl. Sci vol NS-14 pp.135-142, (1967).

DOI: 10.1109/tns.1967.4324407

Google Scholar

[4] P.W. William, L.G. Byerley. Electric field growth in thunderclouds, Quart. J. R. Met. Soc., vol. 101, pp.979-992, 1975.

Google Scholar

[5] G.J. Dettro, L.G. Smith A rocket borne electric field meter for the middle atmosphere, Aeronomy Report, Urbana, University of Illinois, NO. 105, (1982).

Google Scholar

[6] J.N. Chubb, Two new designs of 'field mill' type fieldmeters not requiring earthing of rotating chopper, IEEE Trans. on Industry Applications. vol. 26, pp.1178-1181, Nov-Dec, (1990).

DOI: 10.1109/28.62405

Google Scholar

[7] B.Z. Kaplan, U. Suissa, Duality of the electric covering fieldmill and the fluxgate magnetometer, IEEE Trans. On Magnetics vol. 34, p.2306– 2315, Jul, (1998).

DOI: 10.1109/20.703870

Google Scholar

[8] M.N. Horenstein and P.R. Stone, A micro-aperture electrostatic field mill based on MEMS technology, J. Electrost. vol. 51–52, p.515–521, (2001).

DOI: 10.1016/s0304-3886(01)00048-1

Google Scholar

[9] P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe and J.A. Yasaitis, Electrostatic charge and field sensors based on micromechanical resonators, J. Microelectromech. Syst. Vol, 12, p.577–589, Oct, (2003).

DOI: 10.1109/jmems.2003.818066

Google Scholar

[10] C. Peng, X. Chen, Q. Bai, L. Luo, S. Xia, A Novel High Performance Micromechanical Resonant Electrostatic Field Sensor Used In Atmospheric Electric Field Detection, in Proc. MEMS06, pp.698-701.

DOI: 10.1109/memsys.2006.1627895

Google Scholar

[11] Yang Peng-fei, Peng Chun-rong, Zhang Hai-yan, et al. Design and testing of a SOI electric-field microsensor, Journal of Electronics & Information Technology, Vol. 33(11): 2771-2774, Nov. (2011).

DOI: 10.3724/sp.j.1146.2010.01285

Google Scholar

[12] Chen X, Peng C, Tao H, et al. Thermally driven micro-electrostatic fieldmeter[J]. Sensors and Actuators A, 2006, 132(2): 677-682.

DOI: 10.1016/j.sna.2006.02.044

Google Scholar

[13] Bahreyni B, et al. Analysis and design of a micromachined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31-36.

DOI: 10.1109/jmems.2007.911870

Google Scholar

[14] D. Koester, A. Cowen, R. Mahadevan, et al., PolyMUMPs Design Hand book, Rev. 11. 0, http: /www. memscap. com.

Google Scholar

[15] M. Sinclair, A high frequency resonant scanner using thermal actuation, in Proc. MEMS02, p.698–701.

Google Scholar