Design of Charge Pump for Inertial Sensor Drive Circuit

Article Preview

Abstract:

A transistor-level circuit design of charge pump is introduced to drive the inertial device. The design is made of several big modules, including main charge pump module, band gap reference module, comparator module, oscillating module, control module, temperature protection module. A three-stage charge pump is applied to achieve 5 V to 18 V DC/DC conversion, and each stage uses the cross coupled charge pump circuit, taking body effect, threshold voltage drop and efficiency into account. Considering efficiency and power consumption, the band gap reference module adopts a self-biased op amp. To make the comparator transient response fast, the op amp cascades two inverters. The temperature protection module sets a maximum temperature to protect the charge pump. The control module is composed of a data selector, a two-phase non-overlap clock circuit and a frequency divider to optimize clock signal. Then simulations are given and the charge pump is analyzed, finally the efficiency of charge pump is calculated. Designed in CSMC 0.5um process, the charge pump has an efficiency of 87.63 percent, a 19.85V output voltage, a 100 mA output current, and 6.05mV ripple.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

942-951

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Saul, P. H., Brunson, K. M., Bunyan, R. J. T., 2003. Versatile high voltage level shift and driver for MEMS applications. Electronics Letters, 39(2): 185-186.

DOI: 10.1049/el:20030144

Google Scholar

[2] Innocent, M., Wambacq, P., Donnay, S., Sansen, W., De Man, H., 2003. A linear high voltage charge pump for MEMs applications in 0. 18um CMOS technology. Proceedings of the 29th European Solid-State Circuits Conference, pp.457-460.

DOI: 10.1109/esscirc.2003.1257171

Google Scholar

[3] Dumas, N., Latorre, L., Mailly, F., Nouet, P., 2010. Design of a smart CMOS high-voltage driver for electrostatic MEMS switches. 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), pp.44-47.

DOI: 10.1109/dtip.2015.7160966

Google Scholar

[4] Bayer, E., Schmeller, H., 2000. Charge pump with Active Cycle regulation-closing the gap between linearand skip modes. IEEE 31st Annual Power Electronics Specialists Conference, , pp.1497-1502.

DOI: 10.1109/pesc.2000.880528

Google Scholar

[5] Dickson, J. F., 1976. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3): 374 –378.

DOI: 10.1109/jssc.1976.1050739

Google Scholar

[6] Choi, K. H., Park, J. M., Kim, J. K., Jung, T. S., Suh, K. D., 1997. Floating-well charge pump circuits for sub-2. 0 V single power supply flash memories. IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp.61-62.

DOI: 10.1109/vlsic.1997.623807

Google Scholar

[7] Moisiadis, Y., Bouras, I., Arapoyanni, A., 2000. A CMOS charge pump for low voltage operation. The 2000 IEEE International Symposium on Circuits and Systems, pp.577-580.

DOI: 10.1109/iscas.2000.857500

Google Scholar

[8] Mensi, L., Colalongo, L., Richelli, A., Kovacs-Vajna, Z. M., 2005. A new integrated charge pump architecture using dynamic biasing of pass transistors. Proceedings of the 31st European Solid-State Circuits Conference ESSCIRC, pp.85-88.

DOI: 10.1109/esscir.2005.1541564

Google Scholar

[9] Wu, J. T., Chang, K. L. , 1998. MOS charge pumps for low-voltage operation. IEEE Journal of Solid-State Circuits, 33(4): 592-597.

DOI: 10.1109/4.663564

Google Scholar

[10] Favrat, P., Deval, P., Declercq, M. J., 1998. A high-efficiency CMOS voltage doubler. IEEE Journal of Solid-State Circuits, 33(3): 410-416.

DOI: 10.1109/4.661206

Google Scholar

[11] Zhu, H., Huang, M., Zhang, Y., Yoshihara, T., 2011. A 4-phase cross-coupled charge pump with charge sharing clock scheme. 2011 International Conference on Electronic Devices, Systems and Applications, pp.73-76.

DOI: 10.1109/icedsa.2011.5959067

Google Scholar

[12] Baderna, D., Cabrini, A., Pasotti, M., Torelli, G., 2006. Power efficiency evaluation in Dickson and voltage doubler charge pump topologies. Microelectronics Journal, 37(10): 1128-1135.

DOI: 10.1016/j.mejo.2005.12.013

Google Scholar

[13] Williams, R. K., Sevilla, L. T., Rodamaker, M. C., 1993. Predicting hysteretic oscillations in over-temperature protection of a power IC using transient electrothermal circuit simulation. Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, pp.304-309.

DOI: 10.1109/ispsd.1993.297143

Google Scholar

[14] Hsu, C. P., Lin, H., 2010. Analytical models of output voltages and power efficiencies for multistage charge pumps, IEEE Transactions on Power Electronics, 25(6): 1375-1385.

DOI: 10.1109/tpel.2010.2040091

Google Scholar

[15] Lee, I., Kim, G., Kim, W., 1994. Exponential curvature-compensated BiCMOS bandgap references. IEEE Journal of Solid-State Circuits, 29(11): 1396-1403.

DOI: 10.1109/4.328634

Google Scholar