A New Readout System for LC Resonant Sensors

Article Preview

Abstract:

A new readout system based on LC resonant sensor is presented. The readout system consists of a reader coil inductively coupled to the LC resonant sensor, a measurement unit, and a PC post processing unit. The measurement unit generates an output voltage representing the sensor resonance, converts the output voltage to numerical form, and saves the converted digital data. The PC post processing unit processes the digital data and calculates the sensor's resonance frequency. The readout system enables wireless interrogation and its accuracy is exemplified by an experimental system. The experimental system can detect the resonant frequency of sensor automatically and effectively. The experimental results are presented for different sensor resonance frequencies with various sensor capacitance values and show good agreement with the theoretical results. The entire design is simple, easy to use, and widely applicable for applications where the coupling distance between sensor and reader coil is variable.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

957-963

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. J. Chen, D. C. Rodger, S. Saati, M. S. Humayun, and Y. -C. Tai, Implantable parylene-based wireless intraocular pressure sensor, in Proc. IEEE MEMS, p.58–61, January (2008).

DOI: 10.1109/memsys.2008.4443592

Google Scholar

[2] M. Nabipoor and B. Y. Majlis, A new passive telemetry LC pressure and temperature sensor optimized forTPMS, J. Phys., Conf. Ser., vol. 34, April 2006, p.770–775.

DOI: 10.1088/1742-6596/34/1/127

Google Scholar

[3] M. A. Fonseca, J. M. English, M. von Arx, and M.G. Allen, Wireless micromachined ceramic pressure sensor for high-temperature applications,J. Microelectromech. Syst., vol. 11, no. 4, p.337–343, August2002.

DOI: 10.1109/jmems.2002.800939

Google Scholar

[4] J. Coosemans, M. Catrysse, and R. Puers, A readout circuit for an intraocular pressure sensor, Sens. Actuators A, Phys., vol. 110, no. 1–3, p.432–438, February (2004).

DOI: 10.1016/j.sna.2003.09.015

Google Scholar

[5] A. Baldi, W. Choi, and B. Ziaie, A self-resonant frequency-modulated micromachined passive pressure transensor, IEEE Sensors J., vol. 3, no. 6, p.728–733, December (2003).

DOI: 10.1109/jsen.2003.820362

Google Scholar

[6] K. Takahata and Y. B. Gianchandani, A micromachined capacitive pressure sensor using a cavity-less structure with bulk-metal/elastomer layers and its wireless telemetry application, Sensors, vol. 8, no. 4, p.2317–2330, April (2008).

DOI: 10.3390/s8042317

Google Scholar

[7] O. Akar, T. Akin, and K. Najafi, A wireless batch sealed absolute capacitive pressure sensor, Sens. Actuators A, Phys., vol. 95, no. 1, p.29–38, December (2001).

DOI: 10.1016/s0924-4247(01)00753-1

Google Scholar

[8] M. A. Fonseca, J. M. English, M. von Arx, and M. G. Allen, High temperature characterization of ceramic pressure sensors, in Proc. Conf. Solid-State Sens. and Actuators, Munich, Germany, June 10-14, 2001, p.486–489.

DOI: 10.1007/978-3-642-59497-7_115

Google Scholar

[9] K.G. Ong, K. Zeng, and C. A. Grimes, A wireless passive, carbon nanotube based gas sensor, IEEE Sensors J., vol. 2, no. 2, p.82–88, April (2002).

DOI: 10.1109/jsen.2002.1000247

Google Scholar

[10] K. G. Ong, J. Wang, R. S Singh, L. G Bachas, and C. A. Grimes, Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: Application to environment sensing, Biosens. Bioelectron., vol. 16, no. 4/5, p.305–312, June (2001).

DOI: 10.1016/s0956-5663(01)00131-2

Google Scholar

[11] K. G. Ong, J. S. Bitler, C. A. Grimes, L. G. Puckett, and L. G. Bachas, Remote query resonant-circuit sensors for monitoring of bacteria growth: Application to food quality control, Sensors, vol. 2, no. 6, p.219–232, (2002).

DOI: 10.3390/s20600219

Google Scholar

[12] J. C. Butler, A. J. Vigliotti, F. W. Verdi, and S. M. Walsh, Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor, Sens. Actuators A, Phys., vol. 102, no. 1, p.61–66, December (2002).

DOI: 10.1016/s0924-4247(02)00342-4

Google Scholar

[13] K. G. Ong and C. A. Grimes, A resonant printed-circuit sensor for remote query monitoring of environmental parameters, Smart Mater. Struc., vol. 9, no. 4, p.421–428, August (2000).

DOI: 10.1088/0964-1726/9/4/305

Google Scholar

[14] E. C. Park, J. B. Yoon, and E. Yoon, Hermetically sealed inductor–capacitor (LC) resonator for remote pressure monitoring, Jpn. J. Appl. Phys., vol. 37, no. 12B, p.7124–7128, December (1998).

DOI: 10.1143/jjap.37.7124

Google Scholar

[15] S. Y. Kim, H. J. Kim, J. S. Park, and S. S. Yang, A telemetry silicon pressure sensor of LC resonance type, in Proc. SPIE—Design, Test, Integration and Packaging of MEMS/MOEMS, p.452–462, (2001).

DOI: 10.1117/12.425371

Google Scholar

[16] H. J. Yoon, J. M. Jung, J. S. Jeong, and S. S Yang, Micro devicesfor a cerebrospinal fluid (CSF) shunt system, Sens. Actuators A, Phys., vol. 110, no. 1–3, p.68–76, February2004.

DOI: 10.1016/j.sna.2003.10.047

Google Scholar

[17] T. J. Harpster, B. Stark, and K. Najafi, A passive wireless integratedhumidity sensor, Sens. Actuators A, Phys., vol. 95, no. 2/3, p.100–107, January (2002).

DOI: 10.1016/s0924-4247(01)00720-8

Google Scholar

[18] J. Garcia-Canton, A. Merlos, and A. Baldi, High-quality factor electrolyte insulator silicon capacitor for wireless chemical sensing, IEEE Electron Device Lett., vol. 28, no. 1, p.27–29, January (2007).

DOI: 10.1109/led.2006.888189

Google Scholar

[19] G. J. Radosavljevic, L. D. Zivanov, W. Smetana, A.M. Maric,M. Unger, and L. F. Nad, A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology, IEEE Sensors J., vol. 9, no. 12, p.1956–1962, December (2009).

DOI: 10.1109/jsen.2009.2030974

Google Scholar

[20] T. J. Harpster, S. Hauvespre, M. R. Dokmeci, and K. Najafi, A passive humidity monitoring system for insitu remotewireless testing of micropackages,J. Microelectromech. Syst., vol. 11, no. 1, p.61–67, February (2002).

DOI: 10.1109/84.982864

Google Scholar

[21] S.M. Maria, M. D M. Hershenson, S. P. Boyd, et al, Simple accurate expressions for planar spiral inductances, IEEE Journal of Solid-state Circuits, vol. 34, no. 10, pp.1419-1424, (1999).

DOI: 10.1109/4.792620

Google Scholar