[1]
P. J. Chen, D. C. Rodger, S. Saati, M. S. Humayun, and Y. -C. Tai, Implantable parylene-based wireless intraocular pressure sensor, in Proc. IEEE MEMS, p.58–61, January (2008).
DOI: 10.1109/memsys.2008.4443592
Google Scholar
[2]
M. Nabipoor and B. Y. Majlis, A new passive telemetry LC pressure and temperature sensor optimized forTPMS, J. Phys., Conf. Ser., vol. 34, April 2006, p.770–775.
DOI: 10.1088/1742-6596/34/1/127
Google Scholar
[3]
M. A. Fonseca, J. M. English, M. von Arx, and M.G. Allen, Wireless micromachined ceramic pressure sensor for high-temperature applications,J. Microelectromech. Syst., vol. 11, no. 4, p.337–343, August2002.
DOI: 10.1109/jmems.2002.800939
Google Scholar
[4]
J. Coosemans, M. Catrysse, and R. Puers, A readout circuit for an intraocular pressure sensor, Sens. Actuators A, Phys., vol. 110, no. 1–3, p.432–438, February (2004).
DOI: 10.1016/j.sna.2003.09.015
Google Scholar
[5]
A. Baldi, W. Choi, and B. Ziaie, A self-resonant frequency-modulated micromachined passive pressure transensor, IEEE Sensors J., vol. 3, no. 6, p.728–733, December (2003).
DOI: 10.1109/jsen.2003.820362
Google Scholar
[6]
K. Takahata and Y. B. Gianchandani, A micromachined capacitive pressure sensor using a cavity-less structure with bulk-metal/elastomer layers and its wireless telemetry application, Sensors, vol. 8, no. 4, p.2317–2330, April (2008).
DOI: 10.3390/s8042317
Google Scholar
[7]
O. Akar, T. Akin, and K. Najafi, A wireless batch sealed absolute capacitive pressure sensor, Sens. Actuators A, Phys., vol. 95, no. 1, p.29–38, December (2001).
DOI: 10.1016/s0924-4247(01)00753-1
Google Scholar
[8]
M. A. Fonseca, J. M. English, M. von Arx, and M. G. Allen, High temperature characterization of ceramic pressure sensors, in Proc. Conf. Solid-State Sens. and Actuators, Munich, Germany, June 10-14, 2001, p.486–489.
DOI: 10.1007/978-3-642-59497-7_115
Google Scholar
[9]
K.G. Ong, K. Zeng, and C. A. Grimes, A wireless passive, carbon nanotube based gas sensor, IEEE Sensors J., vol. 2, no. 2, p.82–88, April (2002).
DOI: 10.1109/jsen.2002.1000247
Google Scholar
[10]
K. G. Ong, J. Wang, R. S Singh, L. G Bachas, and C. A. Grimes, Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: Application to environment sensing, Biosens. Bioelectron., vol. 16, no. 4/5, p.305–312, June (2001).
DOI: 10.1016/s0956-5663(01)00131-2
Google Scholar
[11]
K. G. Ong, J. S. Bitler, C. A. Grimes, L. G. Puckett, and L. G. Bachas, Remote query resonant-circuit sensors for monitoring of bacteria growth: Application to food quality control, Sensors, vol. 2, no. 6, p.219–232, (2002).
DOI: 10.3390/s20600219
Google Scholar
[12]
J. C. Butler, A. J. Vigliotti, F. W. Verdi, and S. M. Walsh, Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor, Sens. Actuators A, Phys., vol. 102, no. 1, p.61–66, December (2002).
DOI: 10.1016/s0924-4247(02)00342-4
Google Scholar
[13]
K. G. Ong and C. A. Grimes, A resonant printed-circuit sensor for remote query monitoring of environmental parameters, Smart Mater. Struc., vol. 9, no. 4, p.421–428, August (2000).
DOI: 10.1088/0964-1726/9/4/305
Google Scholar
[14]
E. C. Park, J. B. Yoon, and E. Yoon, Hermetically sealed inductor–capacitor (LC) resonator for remote pressure monitoring, Jpn. J. Appl. Phys., vol. 37, no. 12B, p.7124–7128, December (1998).
DOI: 10.1143/jjap.37.7124
Google Scholar
[15]
S. Y. Kim, H. J. Kim, J. S. Park, and S. S. Yang, A telemetry silicon pressure sensor of LC resonance type, in Proc. SPIE—Design, Test, Integration and Packaging of MEMS/MOEMS, p.452–462, (2001).
DOI: 10.1117/12.425371
Google Scholar
[16]
H. J. Yoon, J. M. Jung, J. S. Jeong, and S. S Yang, Micro devicesfor a cerebrospinal fluid (CSF) shunt system, Sens. Actuators A, Phys., vol. 110, no. 1–3, p.68–76, February2004.
DOI: 10.1016/j.sna.2003.10.047
Google Scholar
[17]
T. J. Harpster, B. Stark, and K. Najafi, A passive wireless integratedhumidity sensor, Sens. Actuators A, Phys., vol. 95, no. 2/3, p.100–107, January (2002).
DOI: 10.1016/s0924-4247(01)00720-8
Google Scholar
[18]
J. Garcia-Canton, A. Merlos, and A. Baldi, High-quality factor electrolyte insulator silicon capacitor for wireless chemical sensing, IEEE Electron Device Lett., vol. 28, no. 1, p.27–29, January (2007).
DOI: 10.1109/led.2006.888189
Google Scholar
[19]
G. J. Radosavljevic, L. D. Zivanov, W. Smetana, A.M. Maric,M. Unger, and L. F. Nad, A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology, IEEE Sensors J., vol. 9, no. 12, p.1956–1962, December (2009).
DOI: 10.1109/jsen.2009.2030974
Google Scholar
[20]
T. J. Harpster, S. Hauvespre, M. R. Dokmeci, and K. Najafi, A passive humidity monitoring system for insitu remotewireless testing of micropackages,J. Microelectromech. Syst., vol. 11, no. 1, p.61–67, February (2002).
DOI: 10.1109/84.982864
Google Scholar
[21]
S.M. Maria, M. D M. Hershenson, S. P. Boyd, et al, Simple accurate expressions for planar spiral inductances, IEEE Journal of Solid-state Circuits, vol. 34, no. 10, pp.1419-1424, (1999).
DOI: 10.1109/4.792620
Google Scholar