Performance Test for Nanometer Accuracy Capacitance Displacement Sensor

Article Preview

Abstract:

In checking to see the performance of the nanometer accuracy capacitive sensor, some parameters, such as, the linearity, repeatability and so on are presented as the characterization parameters. Firstly, the series of test method and test devices is designed to measure and evaluate these parameters of a capacitance sensor. Secondly, the measuring setup is consisted by the traceable laser interferometer with high accuracy and nanometer micro-motion system. Finally, in order to meet the displacement linearity test, the measuring method is in line with the Abbe principle. Experimental results indicate that this approach and setup can realize in the best reference line to the minimum linearity is better than 0.01%, repeatability is better than that of 3.5nm, resolution is less than 0.3nm, measurement capability is more unwavering than 3nm. It can satisfy the measurement requirements of capacitance sensor performance testing with nanometer accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

898-902

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Avramov-Zamurovic, N. G. Dagalakis, R. D. Lee, J. M. Yoo, Y. S. Kim, and S. H. Yang: Instrumentation and Measurement, IEEE Transactions. Vol. 60 (2011), p.2730.

DOI: 10.1109/tim.2011.2126150

Google Scholar

[2] S. Xia, and S. Nihtianov: in Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International (IEEE, 2012), p.1838.

Google Scholar

[3] A. J. Sutton, O. Gerberding, G. Heinzel, and D. A. Shaddock: Opt Express. Vol. 20 (2012), p.22195.

DOI: 10.1364/oe.20.022195

Google Scholar

[4] K. Joo, J. D. Ellis, E. S. Buice, J. W. Spronck, and R. H. M. Schmidt: Opt. Express. Vol. 18 (2010), p.1159.

Google Scholar

[5] B. Chen, L. Yan, X. Yao, T. Yang, D. Li, W. Dong, C. Li, and W. Tang: Opt Express. Vol. 18 (2010), p.3000.

Google Scholar

[6] H. Haitjema, P. Schellekens, and S. Wetzels: Metrologia. Vol. 37 (2000), p.25.

Google Scholar

[7] J. D. Ellis, A. J. Meskers, J. W. Spronck, and R. H. M. Schmidt: Opt Lett. Vol. 36 (2011), p.3584.

Google Scholar

[8] J. R. Lawall: JOSA A. Vol. 22 (2005), p.2786.

Google Scholar

[9] S. Lee, J. Lee, Y. Kim, K. Lee, and S. Kim: Opt. Express. Vol. 19 (2011), p.4002.

Google Scholar

[10] S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui: Opt Express. Vol. 17 (2009), p.17324.

DOI: 10.1364/oe.17.017324

Google Scholar

[11] J. Lawall, and E. Kessler: Rev Sci Instrum . Vol. 71(2000), p.2669.

Google Scholar

[12] A. Yacoot, and M. J. Downs: Measurement Science and Technology. Vol. 11 (2000), p.1126.

Google Scholar

[13] Q. Liu, T. Tokunaga, and Z. He: Opt Lett. Vol. 37 (2012), p.434.

Google Scholar

[14] X. Qu, L. Wang: Chinese Journal of Scientific Instrument. Vol. 3l (2010), p.1276. (In Chinese).

Google Scholar

[15] Y. Zhang: JJF 1305-2011 calibration specification for linear displacement sensors. China Zhijian Publicating House, Beijing (2011). (In Chinese).

Google Scholar