[1]
Weinzimer SA. Closed-loop artificial pancreas: current studies and promise for the future [J]. Curr Opin Endocrinol Diabetes Obes, 2012, 19: 88-92.
DOI: 10.1097/med.0b013e3283514e6b
Google Scholar
[2]
Skyler JS. Continuous Glucose Monitoring: An Overview of Its Development [J]. DIABETES TECHNOLOGY &THERAPEUTICS, 2009, 11(1): S5-S10.
Google Scholar
[3]
Howard A, Wolpert MD. Continuous Glucose Monitoring — Coming of Age [J]. The new England journal of medicine, 2010, 7, 363(4): 383-384.
DOI: 10.1056/nejme1006098
Google Scholar
[4]
MANG A, PILL J, et al. Biocompatibility of an Electrochemical Sensor for Continuous Glucose Monitoring in Subcutaneous Tissue[J]. Diabetes technology &therapeutics, 2005, 11, 7(1): 163-174.
DOI: 10.1089/dia.2005.7.163
Google Scholar
[5]
Girardin CM, Huot C, Gonthier M, et al. Continuous glucose monitoring: A review of biochemical perspectives and clinical use in type 1diabetes[J]. Clinical Biochemistry, 2009, 42: 4136–142.
DOI: 10.1016/j.clinbiochem.2008.09.112
Google Scholar
[6]
Moussy F. Implantable Glucose Sensor: Progress and Problems [J]. sensors, 2002, Proceedings of IEEE. vol. 1, pp: 270-273.
Google Scholar
[7]
Knoll M, Adam S, Bahr E, et al. Minimally invasive suction sampling unit for interstitial fluid enhanced by electroosmotic mass transport[J]. Sensors and Actuators B, 2002, 11, 87(1): 150-158.
DOI: 10.1016/s0925-4005(02)00230-7
Google Scholar
[8]
YU Hai-xia, LI Da-chao, LIU Tong-kun et al. Interstitial fluid transdermal extraction tool based on microfluidics technology[J]. Optics and Precision Engineering, 2008, 12, 27(6): 933 - 936.
DOI: 10.3788/ope.20111903.0651
Google Scholar
[9]
Mitragotri S, Coleman M, Kost J, et al. Transdermal Extraction of Analytes Using Low-Frequency Ultrasound [J]. Pharmaceutical Research, 2000, 17(4): 466-470.
Google Scholar
[10]
Anke S, Richard H, Charro MB. Noninvasive and Minimally Invasive Methodsfor Transdermal Glucose Monitoring [J]. Diabetes technology &therapeutics, 2005, 7(1): 174-197.
DOI: 10.1089/dia.2005.7.174
Google Scholar
[11]
Venugopala M, Aryab S, Chornokurb G et al. A realtime and continuous assessment of cortisol in ISF using electrochemical impedance spectroscopy [J]. Sensors andActuatorsA: Physical, 2011, 4: Article in Press.
Google Scholar
[12]
GeaLeegsma-Vogt, Elsa Janle, StephenR. Ash, et al. Utilization of in vivo ultrafiltration in biomedical research and clinical applications [J]. Life Sciences, 2003, 73: 2005–(2018).
DOI: 10.1016/s0024-3205(03)00569-1
Google Scholar
[13]
Rosenbloom AJ, Gandhi HR, Subrebost GL. Glucose Microdialysis with Continuous On-Board Probe Performance Monitoring[C]/. 2009 ICME International Conference on Complex Medical Engineering, CME 2009, (2009).
DOI: 10.1109/iccme.2009.4906653
Google Scholar
[14]
Kirsten D. Huinink and Jakob Korf. Ultraslow microfiltration and microdialysis for in vivo sampling: principle, techniques, and applications[M]. Handbook of Behavioral Neuroscience. chapter2. 6. 2006: 217~230.
DOI: 10.1016/s1569-7339(06)16012-9
Google Scholar
[15]
Kirsten D. Huinink, Bert Lambooij, Karola Jansen-van Zelm, et al. Microfiltration sampling in rats and in cows: toward a portable device for continuous glucocorticoid hormone sampling [J]. Analyst. 2010, 135, 390–396.
DOI: 10.1039/b921629d
Google Scholar
[16]
Jakob K, Huininka KD, Posthuma-Trumpie GA. Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring [J]. Trends in Biotechnology, 2010, Vol. 28 No. 3: 150-158.
DOI: 10.1016/j.tibtech.2009.12.005
Google Scholar