[1]
Razack, A.H.A.: Bacillus Calmette–Guérin and Bladder Cancer. Asian Journal of Surgery, 30(4) (2007), pp.302-309.
DOI: 10.1016/s1015-9584(08)60045-7
Google Scholar
[2]
Rosevear, H.M., et al.: Safety and Efficacy of Intravesical Bacillus Calmette-Guérin Plus Interferon α-2b Therapy for Nonmuscle Invasive Bladder Cancer in Patients With Prosthetic Devices. The Journal of Urology, 184(5) (2010), p.1920-(1924).
DOI: 10.1016/j.juro.2010.06.149
Google Scholar
[3]
Swietek, N., et al.: The Value of Transurethral Bladder Biopsy after Intravesical Bacillus Calmette-Guérin Instillation Therapy for Nonmuscle Invasive Bladder Cancer: A Retrospective, Single Center Study and Cumulative Analysis of the Literature. The Journal of Urology, 188(3) (2012).
DOI: 10.1016/j.juro.2012.05.015
Google Scholar
[4]
Pan, C. -W., Z. -J. Shen, and G. -Q. Ding: The Effect of Intravesical Instillation of Antifibrinolytic Agents on Bacillus Calmette-Guerin Treatment of Superficial Bladder Cancer: A Pilot Study. The Journal of Urology, 179(4) (2008), pp.1307-1312.
DOI: 10.1016/j.juro.2007.11.045
Google Scholar
[5]
Solsona, E., et al.: Feasibility of Radical Transurethral Resection as Monotherapy for Selected Patients With Muscle Invasive Bladder Cancer. The Journal of Urology, 184(2) (2010), pp.475-481.
DOI: 10.1016/j.juro.2010.04.008
Google Scholar
[6]
Phull, J.S., et al.: Modern transurethral resection in the management of superficial bladder tumours. British Journal of Medical and Surgical Urology, 4(3) (2011), pp.91-100.
DOI: 10.1016/j.bjmsu.2010.11.004
Google Scholar
[7]
Herr, H.W. and A. Morales: History of Bacillus Calmette-Guerin and Bladder Cancer: An Immunotherapy Success Story. The Journal of Urology, 179(1) (2008), pp.53-56.
DOI: 10.1016/j.juro.2007.08.122
Google Scholar
[8]
Ahn, J.J. and J.M. McKiernan: New Agents for Bacillus Calmette-Guérin–Refractory Bladder Cancer. Urologic Clinics of North America, 40(2) (2013), pp.219-232.
DOI: 10.1016/j.ucl.2013.01.008
Google Scholar
[9]
Freichels, H., R. Jérôme, and C. Jérôme: Sugar-labeled and PEGylated (bio)degradable polymers intended for targeted drug delivery systems. Carbohydrate Polymers, 86(3) (2011), pp.1093-1106.
DOI: 10.1016/j.carbpol.2011.06.004
Google Scholar
[10]
Kumar, A., X. Zhang, and X. -J. Liang: Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnology Advances, (0).
DOI: 10.1016/j.biotechadv.2012.10.002
Google Scholar
[11]
Muro, S.: Challenges in design and characterization of ligand-targeted drug delivery systems. Journal of Controlled Release, 164(2) (2012), pp.125-137.
DOI: 10.1016/j.jconrel.2012.05.052
Google Scholar
[12]
Park, J.H., et al.: Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 62(1) (2010), pp.28-41.
DOI: 10.1016/j.addr.2009.10.003
Google Scholar
[13]
Kim, J. -H., et al.: Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. Journal of Controlled Release, 127(1) (2008), pp.41-49.
DOI: 10.1016/j.jconrel.2007.12.014
Google Scholar
[14]
Wang, C., et al.: Synthesis of the KMB-Drug Delivery Carrier. Physics Procedia, 33(0) (2012), pp.20-24.
Google Scholar
[15]
Yu, J., et al.: Poly(ethylene glycol) shell-sheddable magnetic nanomicelle as the carrier of doxorubicin with enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces, 107(0) (2013), pp.213-219.
DOI: 10.1016/j.colsurfb.2013.02.009
Google Scholar
[16]
Chenite, A., et al.: Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21(21) (2000), pp.2155-2161.
DOI: 10.1016/s0142-9612(00)00116-2
Google Scholar