Fabrication and Formation Mechanism of Electrospun Spatially Defined Fibrous Patterning Structures on Conductive and Insulating Substrates

Article Preview

Abstract:

Besides the conductive patterning substrate, spatially well-defined microfibrous architectures can also be electrospun by using an insulating topographically structured collector (e.g. a nylon fabric). In both cases, it is proposed that the formation of the electrospun microfibrous patterns can be ascribed to the re-distribution of static electric field whenever collectors with different topography are introduced. Moreover, a series of simulation of the static electric field for various collectors (e.g. flat Al foil, conductive and insulating patterned substrates) have been systematically made to illustrate the formation mechanism, respectively. Our results are considered to warrant further scientific understanding on the formation of electrospun microfibrous patterning constructs, and helpful for easy generation of spatially defined architectures which have applications in a variety of areas such as tissue engineering, cell adhesion, proliferation and migration, etc.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

842-848

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Reneker, and A.L. Yarin, Polymer [J], 2008, 49(10): 2387-2425.

Google Scholar

[2] J. Zheng, Y.Z. Long, B. Sun, Z.H. Zhang, F. Shao, H.D. Zhang, Z.M. Zhang, and J.Y. Huang, Chin Phys B[J], 2012, 21(4): 048102/1-6.

Google Scholar

[3] B. Sun, Y. Z. Long, H. D. Zhang, M. M. Li, J. L. Duvail, X. Y. Jiang, and H. L. Yin, Prog Poly Sci [J], 2013, Doi: 10. 1016/j. progpolymsci. 2013. 06. 002.

Google Scholar

[4] B. Sun, Y.Z. Long, S.L. Liu,  Y.Y. Huang,  J. Ma,  H.D. Zhang,  G.Z. Shen and  S. Xu, Nanoscale [J], 2013, DOI: 10. 1039/C3NR01832F.

Google Scholar

[5] W. Cui, Y. Zhou, and J. Chang, Sci Technol Adv Mater [J], 2010, 11: 014108/1-11.

Google Scholar

[6] A. Greiner, and J.H. Wendorff, Adv Polym Sci [J], 2008, 219: 107-171.

Google Scholar

[7] J.D. Schiffman, and C.L. Schauer, Polymer Rev [J], 2008, 48(2): 317-352.

Google Scholar

[8] Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos Sci Technol [J], 2003, 63: 2223-2253.

Google Scholar

[9] D. Li, Y.L. Wang, and Y.N. Xia, Nano Lett [J], 2003, 3(8): 1167-1171.

Google Scholar

[10] Y.Q. Wu, L.A. Carnell, and R.L. Clark, Polymer [J], 2007, 48(19): 5653-5661.

Google Scholar

[11] J.S. Tan, Y.Z. Long, and M.M. Li, Chin Phys Lett [J], 2008, 25(8): 3067-3070.

Google Scholar

[12] M.M. Li, Y.Z. Long, D.Y. Yang, J.S. Sun, H.X. Yin, Z.L. Zhao, W.H. Kong, X.Y. Jiang, and Z.Y. Fan, J Mater Chem [J], 2011, 21: 13159-13162.

Google Scholar

[13] S.G. Kumbar, R. James, S.P. Nukavarapu, and C.T. Laurencin, Biomed Mater [J], 2008, 3(3): 034002/1-15.

Google Scholar

[14] X. Zong, H. Bien, C.Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, and E. Entcheva, Biomaterials [J], 2005, 26: 5330-5338.

DOI: 10.1016/j.biomaterials.2005.01.052

Google Scholar

[15] W. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, and F.K. Ko, J Biomed Mater Res [J], 2002, 60: 613-621.

Google Scholar

[16] W.J. Li, K.G. Danielson, P.G. Alexander, and R.S. Tuan, J Biomed Mater Res A [J], 2003, 67: 1105-1114.

Google Scholar

[17] Z.W. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng [J], 2005, 11: 101-109.

Google Scholar

[18] W.J. Li, R. Tuli, C. Okafor, A. Derfoul, K.G. Danielson, D.J. Hall, and R.S. Tuan, Biomaterials [J], 2005, 26: 599-609.

DOI: 10.1016/j.biomaterials.2004.03.005

Google Scholar

[19] C.A. Bonino, K.E. menko, S.I. Jeong, M.D. Krebs, E. Alsberg, and S.A. Khan, Small [J], 2012, 8(12): 1928-(1936).

Google Scholar

[20] N. Bhattarai, Z.S. Li, D. Edmondson, and M. Q. Zhang, Adv Mater [J], 2006, 18: 1463-1467.

Google Scholar

[21] R.S. Barhate, and S. Ramakrishna, J Membr Sci [J], 2007, 296: 1-8.

Google Scholar

[22] K. Zhang, X.F. Wang, D.Z. Jing, Y. Yang, and M.F. Zhu, Biomed Mater [J], 2009, 4: 035004/1-6.

Google Scholar

[23] D.M. Zhang, and J. Chang, Adv Mater [J], 2007, 19: 3664-3667.

Google Scholar

[24] Z.W. Ding, A. Salim, and B. Ziaie, Langmuir [J], 2009, 25(17): 9648-9652.

Google Scholar

[25] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, Mater Sci Eng C [J], 2007, 27: 504-509.

DOI: 10.1016/j.msec.2006.05.019

Google Scholar

[26] Y.Z. Wang, G.X. Wang, L. Chen, H. Li, T.Y. Yin, B.C. Wang, J. C-M Lee, and Q.S. Yu, Biofabrication [J], 2009, 1: 015001/1-9.

Google Scholar

[27] X.G. Zhou, Q. Cai, N. Yan, X.L. Deng, and X.P. Yang, J Biomed Mater Res A [J], 2010, 95A(3): 755-765.

Google Scholar

[28] S.J. Cho, B. Kim, T. An, and G. Lim, Langmuir [J], 2010, 26(18): 14395-14399.

Google Scholar

[29] Y.Q. Wu, Z.X. Dong, S. Wilson, and R.L. Clark, Polymer [J], 2010, 51: 3244-3248.

Google Scholar

[30] C. Vaquette, and J.J. Cooper-White, Acta Biomater [J], 2011, 7: 2544-2557.

Google Scholar

[31] D. Li, G. Ouyang, J. T. McCann, and Y.N. Xia, Nano Lett [J], 2005, 5(5): 913-916.

Google Scholar

[32] B. Sun, Y.Z. Long, F. Yu, M.M. Li, H.D. Zhang, W.J. Li, and T.X. Xu, Nanoscale [J], 2012, 4(6): 2134-2137.

Google Scholar