The Vibration Pickup of Micro-Pump Diaphragm Based on MEMS Technology Design

Article Preview

Abstract:

This paper designs a micro-pump silicon diaphragm vibration pickup sensor. In this newsensor which is based on piezoresistive effect, four MOSFETs with nc-Si/c-Si heterojunction drainand source are manufactured on the surface of silicon wafer by using the technique of CMOS andPECVD, at edge of <100> orientation of the N-type silicon diaphragm rectangle, and using MEMStechnology, the back of the four MOSFETs device silicon substrate processed into silicon cup, whichconstitutes the vibration pickup sensor. The micro-pump silicon diaphragm vibration pickup sensornot only has all the advantages of conventional force sensitive resistance vibration pickup sensor, butalso has the advantages of small temperature drift, high detection precision, and it can satisfy themicro-pump silicon diaphragm vibration requirements.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

837-841

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wen Dianzhong, Sensitivity analysis of junction field effect-pressure halltron[J]. Review of Scientific Instrument. Vol. 66(1995) , pp.251-255.

DOI: 10.1063/1.1145267

Google Scholar

[2] Lai P T, Spreading-resistance temperature sensor on silicon-on-insulator[J]. IEEE Electron Device letters. Vol. 20 (1999) , pp.589-591.

DOI: 10.1109/55.798053

Google Scholar

[3] Aljancic U, Temperature effects modeling in silicon piezoresistive pressure sensor[C]. Electrotechnical Conference. 2002 MELECON , pp.36-40.

Google Scholar

[4] Paschens J C, Dependence of thermal resistance on ambient and actual temperature[J]. Bipolar/BiCMOS Circuits and Technology. (2004) , pp.96-99.

Google Scholar

[5] M. Fernandez-Bolanos, N. Abele, V. Pott, et al, Polyimide sacrificial layer for SOI SG-MOSFET pressure sensor[J]. Microelectronic Engineering. Vol. 83 (2006) , pp.1185-1188.

DOI: 10.1016/j.mee.2005.12.021

Google Scholar

[6] Vitor Garcia, Fabiano Fruett, A mechanical-stress sensitive differential amplifier[J]. Sensors and Actuators A. Vol. 132 (2006) , p . 8-13.

DOI: 10.1016/j.sna.2006.06.060

Google Scholar

[7] Maciej Oszwadowski, Tomasz Berus, High temperature hall sensors[J]. Sensors and Actuators A. Vol. 136 (2007) , p . 234-237.

DOI: 10.1016/j.sna.2006.11.023

Google Scholar

[8] Wensheng Wei, Gangyi Xu, Tianmin wang, et al, Carrier conduction in heterojunction of hydrogenated nanocrystalline silicon with crystal silicon[J]. Thin Solid Films. Vol. 515 (2007) , pp.3997-4003.

DOI: 10.1016/j.tsf.2006.09.052

Google Scholar

[9] Zhao Xiaofeng, Wen Dianzhong, Li Gang, Fabrication and characteristics of the nc-Si/c-Si heterojunction MOSFETs pressure sensor[J]. Sensors. Vol. 12 (2012) , pp.6369-6379.

DOI: 10.3390/s120506369

Google Scholar