A Solid-Core Photonic Crystal Fiber Nanosensor

Article Preview

Abstract:

A novel evanescent field optical fiber sensor based on a solid-core photonic crystal fiber with large holes has been introduced and successfully fabricated. Experiments show that the ethanol solution of unit concentration causes 0.461dB attenuation of absorbance. The finite element numerical simulation of the grapefruit photonic crystal fiber has been performed. The energy overlap factor is 0.0039 when holes are filled with air, and that is 0.012 when holes are filled with water for the different effective refractive index of the holes. Besides, the relationship between the maximum power transmission and the refractive index is also studied and analyzed. This research provides helpful instructions to the study of evanescent field sensing based on the solid-core photonic crystal fiber with large holes especially for biochemical detection.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

885-890

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Tian, W.H. Wang, N. Wu, X.T. Zou, X.W. Wang, Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules, Sensors. 11 (2011) 3780-3790.

DOI: 10.3390/s110403780

Google Scholar

[2] M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J.L. Santos, H. Ludvigsen, Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber, Opt. Express. 19 (2011) 13980-13988.

DOI: 10.1364/oe.19.013980

Google Scholar

[3] C. Wang, H.C. Chen, J.J. Ma, The Fiber-optic Evanescent Wave Fluorescence Sensor With a Novel Sensing Architecture for Determining Penicillin G., International Conference on Electronics and Optoelectronics, Dalian, China, (2011) p. V3-12- V3-15.

DOI: 10.1109/iceoe.2011.6013287

Google Scholar

[4] A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, A. Cusano, Evanescent wave sensor based on permanently bent single mode optical fiber, Sensors and Actuators B: Chemical. 155 (2011) 903-908.

DOI: 10.1016/j.snb.2011.01.021

Google Scholar

[5] M.H. Chiu, S.F. Wang, R.S. Chang, D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry, Optics letters. 30 (2005) 233-235.

DOI: 10.1364/ol.30.000233

Google Scholar

[6] M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, H. Du, Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy, Optics letters. 35 (2010) 466-468.

DOI: 10.1364/ol.35.000466

Google Scholar

[7] Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap, Optics Communications. 281 (2008) 55-60.

DOI: 10.1016/j.optcom.2007.08.071

Google Scholar

[8] S. F. Cheng, L.K. Chau, Colloidal gold-modified optical fiber for chemical and biochemical sensing, Analytical chemistry. 75 (2003) 16-21.

DOI: 10.1021/ac020310v

Google Scholar

[9] P.S.J. Russell, J.C. Knight, T.A. Birks, S.J. Mangan, W.J. Wadsworth, Recent progress in photonic crystal fibres, In Optical Fiber Communication Conference, IEEE., Baltimore, MD, USA, (2000) 98-100.

DOI: 10.1109/ofc.2000.868534

Google Scholar

[10] F.M. Cox, A. Argyros, M.C. Large, S. Kalluri, Surface enhanced Raman scattering in a hollow core microstructured optical fiber, Optics Express. 15 (2007) 13675-13681.

DOI: 10.1364/oe.15.013675

Google Scholar

[11] G. Coviello, V. Finazzi, J. Villatoro, V. Pruneri, Thermally stabilized PCF-based sensor for temperature measurements up to 1000ºC, Optics Express. 17 (2009) 21551-21559.

DOI: 10.1364/oe.17.021551

Google Scholar

[12] H. Yan, J. Liu, C.X. Yang, G. Jin, C. Gu, L. Hou, Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe, Optics Express. 16 (2008) 8300-8305.

DOI: 10.1364/oe.16.008300

Google Scholar

[13] J.B. Jensen, L.H. Pedersen, T.P. Hansen, J.R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, A. Bjarklev, Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions, Optics letters. 29 (2004).

DOI: 10.1364/ol.29.001974

Google Scholar

[14] J. Sun, C.C. Chan, Y.F. Zhang, P. Shum, Analysis of hollow-core photonic bandgap fibers for evanescent wave biosensing, Journal of biomedical optics. 13(2008) 054048-054048.

DOI: 10.1117/1.2983676

Google Scholar

[15] M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber, Optics Express. 16 (2008) 8427-8432.

DOI: 10.1364/oe.16.008427

Google Scholar

[16] Z.H. Zhang, F.D. Zhang, M. Zhang, D. Pei, Gas sensing properties of index-guided PCF with air-core, Optics & Laser Technology. 40 (2008) 167-174.

DOI: 10.1016/j.optlastec.2007.02.005

Google Scholar