[1]
J. -H. Cho, D. E. Boyce, and P. R. Dawson, Modelling of strain hardening during friction stir welding of stainless steel, Modelling and Simulation in Materials Science and Engineering, vol. 15, no. 5, p.469–486, Sep. (2007).
DOI: 10.1088/0965-0393/15/5/007
Google Scholar
[2]
D. Jacquin, B. de Meester, a. Simar, D. Deloison, F. Montheillet, and C. Desrayaud, A simple Eulerian thermomechanical modeling of friction stir welding, Journal of Materials Processing Technology, vol. 211, no. 1, p.57–65, Jan. (2011).
DOI: 10.1016/j.jmatprotec.2010.08.016
Google Scholar
[3]
D. E. Boyce, P. R. Dawson, B. Sidle, and T. Gnäupel-Herold, A multiscale methodology for deformation modeling applied to friction stir welded steel, Computational Materials Science, vol. 38, no. 1, p.158–175, Nov. (2006).
DOI: 10.1016/j.commatsci.2006.01.021
Google Scholar
[4]
P. Carlone and G. S. Palazzo, A Numerical and Experimental Analysis of Microstructural Aspects in AA2024-T3 Friction Stir Welding, Key Engineering Materials, vol. 554–557, p.1022–1030, Jun. (2013).
DOI: 10.4028/www.scientific.net/kem.554-557.1022
Google Scholar
[5]
E. Feulvarch, J. -C. Roux, and J. -M. Bergheau, A simple and robust moving mesh technique for the finite element simulation of Friction Stir Welding, Journal of Computational and Applied Mathematics, vol. 246, p.269–277, Jul. (2013).
DOI: 10.1016/j.cam.2012.07.013
Google Scholar
[6]
M. Chiumenti, M. Cervera, C. Agelet de Saracibar, and N. Dialami, Numerical modeling of friction stir welding processes, Computer Methods in Applied Mechanics and Engineering, vol. 254, p.353–369, Feb. (2013).
DOI: 10.1016/j.cma.2012.09.013
Google Scholar
[7]
G. Buffa, L. Fratini, S. Pellegrino, and F. Micari, On the Field Variables Influence on Bonding Phenomena during FSW Processes: Experimental and Numerical Study, Key Engineering Materials, vol. 549, p.484–491, Apr. (2013).
DOI: 10.4028/www.scientific.net/kem.549.484
Google Scholar
[8]
H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding, Modelling and Simulation in Materials Science and Engineering, vol. 13, no. 1, p.77–93, Jan. (2005).
DOI: 10.1088/0965-0393/13/1/006
Google Scholar
[9]
L. Fourment and S. Guerdoux, 3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration, International Journal of Material Forming, vol. 1, no. S1, p.1287–1290, Apr. (2008).
DOI: 10.1007/s12289-008-0138-5
Google Scholar
[10]
S. Philippe, L. Fourment, and P. Montmitonnet, Application of the Arbitrary Lagrangian Eulerian formulation to the numerical simulation of stationary forming processes with dominant tangential material motion., Steel Research International, vol. 2, no. 2, p.571–578, (2008).
Google Scholar
[11]
L. Fourment, S. Gavoille, U. Rippert, and K. Kpodzo, Efficient formulations for quasi-steady processes simulations: Multi-mesh method, arbitrary Lagrangian or Eulerian formulation and free surface algorithms, in 11th International Conference on Numerical Methods in Industrial Forming Processes (Numiform), (2013).
DOI: 10.1063/1.4806837
Google Scholar
[12]
M. Assidi, L. Fourment, S. Guerdoux, and T. Nelson, Friction model for friction stir welding process simulation: Calibrations from welding experiments, International Journal of Machine Tools and Manufacture, vol. 50, no. 2, p.143–155, Feb. (2010).
DOI: 10.1016/j.ijmachtools.2009.11.008
Google Scholar
[13]
G. Losilla, P. Montmitonnet, M. Bouzaiane, and P. Clément, Modélisation du laminage circulaire par éléments finis., pem. utbm. fr, vol. 33, no. 0, p.2–5, (2002).
Google Scholar
[14]
T. Nagata, Simple local interpolation of surfaces using normal vectors, Computer Aided Geometric Design, vol. 22, no. 4, p.327–347, May (2005).
DOI: 10.1016/j.cagd.2005.01.004
Google Scholar