Experimental and Numerical Study on Linear Friction Welding of AA2011 Aluminum Alloy

Article Preview

Abstract:

Linear Friction Welding (LFW) is a solid-state joining process used for non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In the process, the heat source is given by the frictional forces work decaying into heat and determining a local softening of the material and eventually the needed bonding conditions. In the paper, an experimental and numerical campaign is proposed for AA2011 aluminum alloys welding. Different case studies are considered with fixed oscillation frequency and varying pressure at the interface between the specimens. Constant oscillation amplitude and specimens geometry is used. The calculated results permitted to highlight the effects of the process parameters on the material flow determining the soundness of the weld.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1511-1518

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.W. Kallee, E.D. Nicholas, M.J. Russell, Friction welding of aero engine components. in: G. Lutjering, J. Albrecht, (Eds. ), Tenth world conference on titanium. Germany, 2003, p.2651.

Google Scholar

[2] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, J. Mat. Sci. and Eng. 50 (2005) 1-78.

Google Scholar

[3] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A 429 (2006) 50.

DOI: 10.1016/j.msea.2006.04.118

Google Scholar

[4] A. Vairis, M. Frost, High frequency linear friction welding of a titanium alloy, J. Wear 217 (1998) 117-131.

DOI: 10.1016/s0043-1648(98)00145-8

Google Scholar

[5] W. Richter, D.E. Patent 477, 084. (1929).

Google Scholar

[6] R. Maurya, J. Kauzlarich,. U.S. Patent 3, 420, 428-A; D.E. Patent 1, 552, 871-A; C.A. Patent 844, 858-A. (1969).

Google Scholar

[7] M. E. Nunn, Aeroengine improvements through linear friction welding. Int. Conf. (2005) 2005-0040.

Google Scholar

[8] P. Wanjara, M. Jahazi, Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships, Metall. Mater. Trans. (2005).

DOI: 10.1007/s11661-005-0335-5

Google Scholar

[9] A. Vairis, M. Frost, High frequency linear friction welding of a titanium alloy. J. Wear (1998).

DOI: 10.1016/s0043-1648(98)00145-8

Google Scholar

[10] M. Karadge, M. Preuss, P. J. Withers, S. Bray, Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys, Mat. Sci. Eng. 491(1) 446-453.

DOI: 10.1016/j.msea.2008.04.064

Google Scholar

[11] L. Fratini, G. Buffa, M. Cammalleri, D. Campanella, On the linear friction welding process of aluminum alloys: Experimental insights through process monitoring, CIRP Annals – Manuf. Technol. 62 (2013) 295–298.

DOI: 10.1016/j.cirp.2013.03.056

Google Scholar

[12] R. Turner, J.C. Gebelin, R.M. Ward, R.C. Reed, Acta Mater. 59, (2011) 3792.

Google Scholar

[13] J. Tao, T.C. Zhang, P.T. Liu, J. Li, Mater. Sci. Forum 575-578, (2008) 811.

Google Scholar

[14] L. Fratini, G. Buffa, D. Campanella, D. La Spisa, Investigations on the linear friction welding process through numerical simulations and experiments, Mater. Design. 40 (2012) 285–291.

DOI: 10.1016/j.matdes.2012.03.058

Google Scholar